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Abstract

The global log canonical threshold, algebraic counterpart to Tian’s alpha–invariant, plays an
important role when studying the geometry of Fano varieties. In particular, Tian showed that
Fano manifolds with big alpha–invariant can be equipped with a Kähler–Einstein metric. In
recent years Donaldson drafted a programme to precisely determine when a smooth Fano variety
X admits a Kähler–Einstein metric. It was conjectured that the existence of such a metric is
equivalent to X being K-stable, an algebraic–geometric property. A crucial step in Donaldson’s
programme consists on finding a Kähler–Einstein metric with edge singularities of small angle
along a smooth anticanonical boundary. Jeffres, Mazzeo and Rubinstein showed that a dynamic
version of the alpha–invariant could be used to find such metrics.

The global log canonical threshold measures how anticanonical pairs fail to be log canonical.
In this thesis we compute the global log canonical threshold of del Pezzo surfaces in various set-
tings. First we extend Cheltsov’s computation of the global log canonical threshold of complex
del Pezzo surfaces to non-singular del Pezzo surfaces over a ground field which is algebraically
closed and has arbitrary characteristic. Then we study which anticanonical pairs fail to be
log canonical. In particular, we give a very explicit classification of very singular anticanonical
pairs for del Pezzo surfaces of degree smaller or equal than 3. We conjecture under which
circumstances such a classification is plausible for an arbitrary Fano variety and derive several
consequences. As an application, we compute the dynamic alpha–invariant on smooth del Pezzo
surfaces of small degree, where the boundary is any smooth elliptic curve C.

Our main result is a computation of the dynamic alpha–invariant on all smooth del Pezzo
surfaces with boundary any smooth elliptic curve C. The values of the alpha–invariant depend
on the choice of C. We apply our computation to find Kähler–Einstein metrics with edge
singularities of angle β along C.
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Chapter 1

Introduction

1.1 The Calabi Problem

In 1954, Calabi asked a question in the International Congress of Mathematicians in Amster-

dam, which in its most general form can be stated as follows:

Question 1.1.1. When does a compact Kähler manifold admit a Kähler–Einstein metric?

Let X be a complex compact variety of dimension n with mild singularities. The existence

of a Kähler-Einstein metric on X makes sense only if we assume that the first Chern class of

M is either positive, zero, or negative. This problem is natural in algebraic geometry, when

we consider X to be projective, since all projective varieties are Kähler with a natural metric

provided by the Fubini-Study metric of Pn restricted to X. The first Chern class condition in

Question 1.1.1 also has a natural interpretation within birational geometry, corresponding to

the canonical divisor KX being negative (X is Fano), zero (X is Calabi–Yau) or positive (X is

of general type), respectively. Therefore it has long been suspected that this problem should

have a natural algebro–geometric interpretation. Question 1.1.1 was answered positively for

KX ≡ 0 by S.T. Yau in 1978 (see [Yau77] and [Yau78]), and by T. Aubin in 1976 for KX > 0

[Aub76]. In the Fano case, little progress had been made until very recently, when Donaldson

and his school revived the subject under a new approach. In the Fano case, pioneering work

was carried out by G. Tian for smooth surfaces (see [Tia87], [Tia90a]).

The first step towards answering Question 1.1.1 taken by Tian in [Tia87] was to introduce

a numerical invariant, α(X), known as Tian’s α–invariant, to give sufficient conditions for the

existence of a Kähler–Einstein metric on a Fano manifold.

Theorem 1.1.2. Let X be a Fano variety with quotient singularities. Suppose

α(X) > dimX

dimX + 1

holds. Then X has an orbifold KählerEinstein metric.

This Theorem was proved in the smooth case by Tian in [Tia87]. The generalisation to

singular cases are due to [DK01] using methods in [Nad90].

Tian’s α–invariant coincides with the global log canonical threshold, glct(X), as shown in

[DK01] and [CS08, App. A]. This algebraic invariant, which is defined in Section 2.1 of this

Thesis, is algebraic and has a birational nature. Therefore it is possible to compute it in
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many examples, providing that we have enough information on the variety X. Unfortunately

Theorem 1.1.2 gives a sufficient but not necessary condition for the existence of a Kähler–

Einstein metric. Indeed, glct(P2) = 1
3

(see Theorem 1.2.5) but the Fubini-Study metric in P2 is

clearly Kähler-Einstein.

Almost 20 years ago Yau and Tian suggested that X being Kähler–Einstein should be

equivalent to some type of algebro–geometric stability, known as K–stability. The definitions

regarding K–stability are very technical and the details change depending on the author. We

follow [CDS12b], which we believe to be the most standard algebraic terminology.

Definition 1.1.3. LetX be a Fano variety with log terminal singularities. A test-configuration

for X is a flat family π∶ X → A1 embedded in PN ×A1 for some N , invariant under a Gm action

on PN ×C covering the standard multiplicative action on A1 such that

• π−1(1) ≅X and the embedding X ⊂ PN is defined by the complete linear system ∣ − rKX ∣
for some r ≥ 1;

• The central fibre X0 = π−1(0) is a normal variety with klt singularities.

Let L = OPN (1)∣X0 be the hyperplane bundle, L→ X0. The vector space H0(X0, L
k) where

k ≥ 0 has a Gm-action. Let dk = h0(X0, L
k) and wk be the total weight of the action. For

large k, dk and wk are polynomials on the variable k of degrees n,n+1 respectively. Thus

wk
kdk

= F0 + F1k
−1 +O(k−2)

and the Donaldson-Futaki invariant of X is DF(X) = F1.

Definition 1.1.4. A Fano variety X is K-stable if for all test configurations X such that X0 /≅X
we have DF(X) > 0.

A priori further test configurations can be considered when defining K-stability, by relaxing

the conditions on the singularities of X0. However C. Li and C. Xu have proved in [LX11] that

the above definition of test configuration is enough to test K–stability.

Conjecture 1.1.5 (Yau-Tian-Donaldson, [Yau96], [Tia97]). Let X be a complex Fano variety

with klt singularities. Then

X is K-stable⇔Xadmits a Kähler–Einstein metric.

A lot of progress was recently achieved in solving this long standing conjecture. In particular

R. Berman showed the following

Theorem 1.1.6 (Berman, [Ber12]). Let X be a complex Fano variety with klt singularities

which admits a Kähler–Einstein metric, then X is K–stable.

A partial converse has been recently proved by X-X. Chen, S.K. Donaldson and S. Sun in

[CDS12b], [CDS12c], [CDS12a] and [CDS13] and independently by Tian in [Tia12]:

Theorem 1.1.7. Conjecture 1.1.5 holds whenever X is a smooth Fano complex manifold.

Unfortunately Theorem 1.1.7 does not provide a very effective method to decide when a

given Fano manifold admits a Kähler–Einstein metric, since the number of test configurations

to check is huge. From that point of view Theorem 1.1.2 is often a better method.
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Donaldson’s programme to solve Theorem 1.1.7 was drafted in [Don10] and it uses a dynamic

approach.

Definition 1.1.8. Let X be a compact Kähler manifold of dimension n and 0 < β ≤ 1. Let

D ∼ −KX be a smooth effective divisor and β ∈ (0,1] such that −(KX + (1 − β)D) is ample for

0 < β ≪ 1. A Kähler edge metric on X with singularities of angle 2πβ along D is a Kähler

metric gβ on X ∖D such that it is asymptotically equivalent at D to the model edge metric

gβ ∶= ∣z1∣2β−2∣dz1∣2 +
n

∑
j=2

∣dzj ∣2,

where z1, z2, . . . , zn are holomorphic coordinates on X such that D = {z1 = 0} locally. When

β = 1 they coincide with usual Kähler metrics.

If gβ is also an Einstein metric, we say that gβ is a Kähler–Einstein metric with edge

singularities of angle 2πβ along D.

All the above concepts can be generalised to this dynamic setting. In particular, we have

dynamic versions of Tian’s α–invariant and Theorem 1.1.2 by T. Jeffres, R. Mazzeo and Y.

Rubinstein and work of R. Berman:

Theorem 1.1.9 ([JMR11], see also [Ber10]). Let (X,D) be a smooth log pair where X is a

smooth Fano variety. Suppose that −(KX + (1 − β)D) is ample for some β ∈ (0,1]. If

α(S,∑(1 − β)D) > dimX

dimX + 1
,

then there is a Kähler–Einstein metric with edge singularities of angle 2πβ along D.

The approach described in [CDS12b] to prove Theorem 1.1.7 is the following. First the

authors construct a dynamic Donaldson-Futaki invariant DFβ(X), which is inear on β and

show that there is always a Kähler-Einstein edge metric for small 0 < β0 ≪ 1 using Theorem

1.1.9. Then a dynamic version of Theorem 1.1.6 is used to show that DFβ(X) ≥ 0 for all test

configurations X of X and small 0 < β ≪ 1. If X does not admit a Kähler–Einstein metric, then

a test configuration X is constructed for X such that DFβ′(X) ≤ 0 for some 0 < β0 < β′ < 1.

Since DFβ is linear on β, then DF1(X) = DF(X) < 0, so X is not K–stable.

1.2 Main results

The above setting and the study by Tian and others of Kähler-Einstein metrics on non-singular

del Pezzo surfaces suggests the following question.

Question 1.2.1. Let S be a non-singular del Pezzo surface and C be a smooth curve such that

−(KS + (1 − β)C) is ample for 0 < β ≪ 1. For which β can we find a Kähler–Einstein metric

with edge singularities along C?

An obvious choice for C are elliptic curves C ∈ ∣−KS ∣. In this thesis we partially answer this

question by computing α(S, (1 − β)C) for all smooth complex del Pezzo surfaces and smooth

curves C ∈ ∣ −KS ∣. This is the content of section 4.

In fact, the only other choice of smooth irreducible curve C is some rational C ≅ P1 with

certain numerical properties. They are classified in Theorem 4.1.1.

Another question comes up naturally:
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Question 1.2.2. Let β < 1 be fixed, and (X,∆) be a log pair, where ∆ is a smooth effective

hypersurface in a given fixed rational class. Does the existence of a Kähler–Einstein edge metric

with edge singularities of angle 2πβ along ∆ depend on ∆ or does it only depend on the class

of ∆?

Our results give indications that the existence of these metrics depends on the class of ∆,

since the value of α(S, (1 − β)C) for C ∈ ∣ −KS ∣ depends on C, its value being higher for very

general members. On the other hand, for the existence of such a metric, a requirement is that

−(KS + (1 − β)∆) is ample. This condition only depends on the rational class of ∆.

Computing the global log canonical threshold of a Fano variety X or a pair (X,∆) requires

certain level of understanding of effective Q-divisors D∼Q(−KX − ∆) with singularities worse

than log canonical. While this understanding does not need to be thorough for α(X), when

computing α(X, (1−β)∆) when ∆ varies, understanding which pairs (X,D) have bad singular-

ities for ∆∼QD is crucial. For this reason, trying to answer Question 1.2.1, we asked ourselves

the following question:

Question 1.2.3. Given a Fano variety X, can we classify all effective Q-divisors D∼Q −KX

such that (X,D) is not log canonical?

In this thesis we develop a setting in which Question 1.2.3 can be answered in a rather

precise way according to Supp(D), where (X,D) is not log canonical only if Supp(D) contains

some very singular effective divisor T ∈ ∣−mKX ∣ for some small m. In the literature D is usually

known as a tiger. For this reason we coined the term cat for such T . Cats live in a finite number

of rational classes ∣ −mKX ∣.

K–stability can be understood also when char(k) > 0. In that case the algebraic counterpart

of Tian’s α–invariant, the global log canonical threshold glct(X), is considered. For instance,

Y. Odaka and Y. Sano proved

Theorem 1.2.4 ([OS10]). Let X be a Q-Fano variety of dimension n and suppose that glct(X) >
n
n+1

(resp. glct(X) ≥ n
n+1

). Then, X is K-stable (resp. K-semistable).

Their proof uses resolution of singularities for dimension n, so it is valid in finite character-

istic when dim(X) ≤ 3.

Although we have introduced K–stability in the context of Kähler-Einstein metrics, it is

interesting in birational geometry on its own right. For instance, in [Oda13], Odaka shows that,

given certain conditions, if (X,L) is K-stable where L is an ample line bundle then X has only

semi-log canonical singularities (the proof assumes char(k) = 0).

This thesis started with a pet project : to compute glct(S) for S a non-singular del Pezzo

surface over an algebraically closed field k. The computations of the global log canonical

thresholds of del Pezzo surfaces were carried out by I. Cheltsov in [Che08] when k = C.

Theorem 1.2.5 (see [Che08] and [Mar12]). Let S be a non-singular del Pezzo surface over an
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algebraically closed field k. Then:

glct(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when K2
S = 1 and ∣ −KS ∣ has no cuspidal curves

5/6 when K2
S = 1 and ∣ −KS ∣ has a cuspidal curve

5/6 when K2
S = 2 and ∣ −KS ∣ has no tacnodal curves

3/4 when K2
S = 2 and ∣ −KS ∣ has a tacnodal curve

3/4 when K2
S = 3 and ∀C ∈ ∣ −KS ∣, C has no Eckardt points

2/3 when K2
S = 3 and ∃C ∈ ∣ −KS ∣ with an Eckardt point

2/3 when K2
S = 4

1/2 when K2
S = 5,6 or S ≅ P1 × P1 (K2

S = 8)
1/3 when K2

S = 7,9 or S ≅ F1 (K2
S = 8)

The cases K2
S = 2,3,4 in Theorem 1.2.5 had been proved in [Che08] using results not known

to be true in finite characteristic. In this thesis we give a new proof for these cases, using the

answer to Question 1.2.3 when K2
S = 2,3 (section 3.2) and providing a different proof when

K2
S = 4 (section 3.3). These new proofs are independent of the characteristic of k.

In Chapter 2 we provide basic definitions and results of the theory of singularities of pairs.

Then we construct our theory of tigers and cats, which is needed in order to answer Question

1.2.3. We finish the chapter with a study of singularities in the case of surfaces, recalling well-

known results which use intersection theory. Furthermore, we provide new results which are

crucial tools for chapters 3 and 4.

Chapter 3 starts with a survey of well-known properties of del Pezzo surfaces. While we

believe most of these results to be well known we did not find them in a shape and notation

adequate to our needs, which is why we prove several Lemmas of del Pezzo surfaces in Section

3.1. The brave reader may want to skip to the second section of Chapter 3, where we answer

Question 1.2.3 for non-singular del Pezzo surfaces. The last section focuses in the non-singular

del Pezzo surface of degree 4, computing the log canonical threshold, in order to complete the

proof of Theorem 1.2.5.

Chapter 4 is the main part of this thesis, where we compute the dynamic α–invariant of all

non-singular del Pezzo surfaces with a boundary elliptic curve. Each of the degrees has its own

section.

Finally, Appendix A contains glorious computations of log canonical thresholds of pairs that

we have outsourced from the main text in order to facilitate readability.
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Chapter 2

Singularities of pairs, a theory of

cats and tigers

“I’m off to check my tiger trap!”

Calvin, in Calvin & Hobbes

2.1 Singularities of pairs

The study of singularities of algebraic varieties and hypersurfaces in them is essential in Bi-

rational Geometry. Historically, singularities were studied in terms of local equations, or as

quotients of affine space by a group action. This approach allowed P. Du Val to classify del

Pezzo surfaces with mild singularities (see [DV34a], [DV34b] and [DV34c]) in the early 20th

century.

In the early 80s, S. Mori pioneered new methods to understand birational contractions (see

[Mor79] and [Mor82]) with the Cone and Contraction Theorem. Mori results were a generalisa-

tion to higher dimensions of Castelnuovo’s Contractibility Criterion for non-singular surfaces,

establishing intersection theory as the standard tool to understand birational contractions.

However, while in dimension 2 we can contract curves to a non-singular surface, in higher di-

mensions the contraction theorem may contract a smooth locus into a singular point. A new

theory of singularities was needed, developed in terms of the resolution of singular points and

the multiplicities of the exceptional divisors. All these ideas form what is nowadays known as

Minimal Model Theory, Mori Theory or the Minimal Model Programme.

In this section we introduce basic notions in the theory of singularities of pairs, following

[KM98] and [Cor07]. Our goal is to define the global log canonical threshold, which is equivalent

to Tian’s α–invariant. The standard reference for the theory of singularities in the Minimal

Model Programme is [Kol97].

Definition 2.1.1. Let X be an algebraic variety of dimension n over an algebraically closed

field k of characteristic p ≥ 0. Let D = ∑ biDi be an effective Q-divisor in X where Di are prime

Weil divisors and bi ∈ Q. Suppose KX +D is Q-Cartier. We say that (X,D) is a log pair, or

simply a pair.

Let f ∶Y →X be a proper birational morphism where Ei are irreducible f–exceptional prime
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divisors such that KY +DY is Q-Cartier where DY = ∑ bi(Di)Y , and

(Di)Y = f−1(Di) ∖Exc(f)

is the strict transform of Di in Y . The log pullback of (X,D) via f is

f∗(KX +D) + ∑
Ei is exceptional

aiEi∼QKY +DY

for some ai = a(Ei,D,X) ∈ Q called the discrepancy of Ei with respect to (X,D). The

discrepancy a(Ei,D,X) depends on the discrete valuation defined by Ei but not on f . We

define a(Di,X,D) = −bi and write the log pullback as

f∗(KX +D) +∑a(Ei,X,D)Ei∼QKY .

Definition 2.1.2. Given any birational morphism f ∶Y →X and an exceptional divisor E ⊂ Y
such that f(E) = p where p ∈ X is a point we will say that E is exceptional over X. We will

say that F is a divisor over p if either F is exceptional over p or p ∈ F ⊂X.

Definition 2.1.3. The discrepancy of (X,D) is given by

Disc(X,D) = inf
E

{a(E,X,D) ∶ E is exceptional}

and the total discrepancy of (X,D) is given by

TotDisc(X,D) = inf
E

{a(E,X,D) ∶ E is a divisor}.

Given p ∈X, we define the discrepancy of (X,D) at p by

Discp(X,D) = inf
E

{a(E,X,D) ∶ E is an exceptional divisor over p}

and the total discrepancy of (X,D) at p is

TotDiscp(X,D) = inf
E

{a(E,X,D) ∶ E is a divisor over p}.

In the above definitions the infimum is taken over all the irreducible exceptional divisors Ei

and all birational morphisms f ∶Y →X and over all irreducible divisors of X.

Notation 2.1.4. When D = 0, we write

a(Ei,X) = a(Ei,X,0), Disc(X) = Disc(X,0) = TotDisc(X,0).

Lemma 2.1.5 ([KM98, Lem. 2.2.7]). If (X,D) is a log pair and D′ is an effective Q-Cartier

Q-divisor, then

a(E,X,D) ≥ a(E,X,D +D′)

for all divisors E over X.

Lemma 2.1.6 ([KM98, Cor. 2.3.1]). Let D be a Q-divisor such that KX +D is Q-Cartier.
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(i) Either Disc(X,D) = −∞ or

−1 ≤ TotDisc(X,D) ≤ Disc(X,D) ≤ 1.

(ii) If X is smooth then Disc(X) = 1.

Definition 2.1.7. Let (X,D) be a pair for X a normal projective variety over an algebraically

closed field k. Assume D is effective. Then (X,D) is

terminal

canonical

Kawamata log terminal (klt)

log canonical

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

at p if TotDiscp(X,D)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

> 0

≥ 0

> −1

≥ −1,

When (X,D) is terminal (respectively canonical, klt, log canonical) ∀p ∈ X, we simply say

that (X,D) is terminal (respectively canonical, klt, log canonical).

We say X is terminal (respectively canonical, klt, log canonical) if (X,0) is terminal (re-

spectively canonical, klt, log canonical).

By Lemma 2.1.6 (ii) smooth varieties are terminal. By Lemma 2.1.6 (i), log canonical is the

widest possible class of singularities for which the concept of discrepancy still makes sense. In

this thesis we will be mostly focused on the log canonical class, which is important when defining

the log canonical threshold. Kawamata log terminal singularities behave well in cohomology.

For instance, the following result can be generalised to log pairs with klt singularities:

Theorem 2.1.8 (Kawamata-Viehweg vanishing theorem, see [Laz04][Thm. 4.3.1]). Let X be

a smooth complex projective variety of dimension n and D a nef and big divisor on X. Then

Hi(X,OX(KX +D)) = 0 for i > 0.

There are other classes of singularities that we will not use such as purely log terminal and

divisorial log terminal. The essay What is log terminal? by O. Fujino in [Cor07] discusses all

these concepts.

Definition 2.1.9. Let (X,D) be a log pair, where D = ∑ biDi. A resolution of X is a

proper birational morphism f ∶Y →X such that Y is smooth. A log resolution of (X,D) is a

resolution f ∶Y → X of X such that (Di)Y is smooth for all i, the set Supp(DY ) ∪Exc(f) has

simple normal crossings and the exceptional locus of f , Exc(f) has pure codimension 1 or is

empty.

If dimX = 2, there is a canonical choic of log resolution, consisting on blowing-up the

singular locus of X (which consists of isolated points) and the singular locus in Supp(D) until

obtaining simple normal crossings.

The condition on the codimension of Exc(f) in the above definition is not always included

in the literature (for instance in [KM98]). However more recent works (see [Cor07]) include it

in order to simplify arguments. We follow the convention in [Cor07] in Definition 2.1.9. In any

case, if codim(Exc(f)) ≥ 2 we can blow-up the smooth locus of higher codimension to obtain a

log resolution in the sense of Definition 2.1.9.

When char(k) = 0, log resolutions exist in all dimensions by [Hir64]. An accessible source

to the proof is [Hau03] or the more recent [Kol07]. If char(k) = p > 0, log resolutions exists
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when dimX = n ≤ 3 by the classical work of S.S. Abhyankar in high characteristics and the very

recent proof of V. Cossart and O. Piltant [CP08], [CP09].

When resolution of singularities is available, it is enough to test the discrepancy on a log

resolution, as the following result illustrates.

Lemma 2.1.10 ([KM98, Cor. 2.32]). Given X, let f ∶Y →X be any resolution of singularities

of X where Exc(f) has pure codimension 1. Let D = ∑ bjDj where bj ≤ 1. Then there is a log

resolution for (X,D) such that if a(Ei,X,D) ≥ −1 for all exceptional Ei, then

Disc(X,D) = min{min
i

{a(Ei,X,D)},min
j

{1 − bj},1}.

In particular, this Lemma tells us that the infimum in Definition 2.1.3 is actually a minimum.

Remark 2.1.11. In Lemma 2.1.10 the existence of the resolution f does not seem to play any

role. Indeed it does. So far our setting only assumes that the ground field k of our varieties

is algebraically closed. When the characteristic of k is finite, it is an open problem whether

resolutions of singularities exist. This is only known in dimensions 1–3. The proof of Lemma

2.1.10 requires the existence of a resolution of singularities for X.

Definition 2.1.12.

(i) The log canonical threshold of a pair (X,D) is

lct(X,D) = max{λ ∶ (X,λD) is log canonical}.

(ii) The local log canonical threshold of the pair (X,D) at p ∈X is

lctp(X,D) = max{λ ∶ (X,λD) is log canonical at p}.

Observe that

lct(X,D) = min
p∈X

lctp(X,D).

Example 2.1.13. Let C = {y2−x3 = 0} ⊂ S = A2 and p = (0,0). Then lct(S,C) = lctp(S,C) = 5
6
.

Indeed, S is smooth and C is an irreducible and reduced Cartier divisor whose only singularity

is at p. The minimal log resolution f ∶Y → S consists of 3 blow-ups over p with exceptional

divisors E1,E2,E3 (see Figure 2.1). The log pullback of (S,C) is

f∗(KS +C) ∼KY +CY + (2 − 1)E1 + (3 − 2)E2 + (6 − 4)E3.

In particular (S,D) is not log canonical since a(E3, S,C) = −2. Consider the log pullback of

(S,λC), for λ ∈ Q:

f∗(KS + λC) ∼KY + λCY + (2λ − 1)E1 + (3λ − 2)E2 + (6λ − 4)E3.

Then a(E1, S, λC) ≥ −1 and a(E2, S, λC) ≥ −1 for λ ≤ 1 and a(E3, S, λC) = 4−6λ ≥ −1 for λ ≤ 5
6
.

Therefore lctp(S,C) = 5
6
.

This example is a particular case of the following result.
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Figure 2.1: Resolution of a cuspidal cubic curve.

Lemma 2.1.14 (see [Igu77]). Let f(x, y) = xm + yn + g(x, y) ∈ k[x, y] where m ≤ n and g is a

polynomial of degree d ≥ n + 1. Let p = (0,0) ∈ A2 and C = {f = 0}. Then

lctp(A2,C) = 1

m
+ 1

n
.

Definition 2.1.15. The locus of log canonical singularities of a log pair (X,D = ∑diDi)
is the closed set:

LCS(X,D) = ( ⋃
di≥1

Di) ∪
⎛
⎝ ⋃
aj≤−1

σ(Fj)
⎞
⎠
⊊X.

where Fj are the reduced exceptional divisors over X for any birational morphism σ∶Y → X.

This is called the non-klt locus in [Kol97].

Suppose (X,D) is not log canonical at some point p. If codim(LCS(X,D)) ≥ 2 we will say

that (X,D) is log canonical in codimension 1 or log canonical near p but not at p.

Moreover, if dim(LCS(X,D)) = 0 we will say that p is an isolated locus of non-log canonical

singularities or simply that it is isolated, when no confusion is likely. When dimX = 2 these

two concepts coincide.

Definition 2.1.16. Let X be a Fano variety. Let ∆ be an effective Q-divisor such that −(KX −
∆) is ample and (X,∆) has klt singularities. The global log canonical threshold of (X,∆)
is

glct(X,∆) = sup{λ ∶ (X,∆ + λD) is log canonical ∀D∼Q − (KX −∆) effective Q-divisor}.

When ∆ = 0, we simply write glct(X) = glct(X,0). When ∆ = (1 − β)D, we call the function

glct(X, (1 − β)D)∶ (0,1] → R with variable β the dynamic global log canonical threshold

of (X,D).This function can be shown to be continuous when varying β.

Theorem 2.1.17 (see [DK01] or [CS08, App. A]). Let (X,D) be a pair with klt singularities

such that −(KX+D) is ample. The global log canonical threshold of (X,D)coincides with Tian’s

α–invariant:

glct(X,D) = α(X,D).

When the ground field k of X is k = C, we will use the notation α(X,D), and when k = k̄
is simply algebraically closed, we will use glct(X,D).

It is not yet known whether glct(X) is a rational number. The following conjecture, due to

Tian for complex Fano manifolds (see [Tia90b]), generalises the one in [CPS10, Conj 1.4] for

complex Fano varieties:
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Conjecture 2.1.18. Let X be a projective Fano variety over an algebraically closed field.

Suppose X is Q-factorial and has at wost log terminal singularities. Then

(i) ∃D∼Q −KX , an effective Q-divisor on X such that glct(X) = lct(X,D).

(ii) glct(X) is a rational number.

Note that (i) implies (ii). The conjecture is not known to be true even for complex del Pezzo

surfaces with quotient singularities. However, there is strong evidence to support it. In fact, in

the case of complex del Pezzo surfaces with Du Val singularities, D can be found in ∣ −mKX ∣
for m ≤ 6 (see [Kos09], [PW10]).

When computing global log canonical thresholds the following results and its corollaries

are essential. They allow us to remove some irreducible divisor Bi from any other effective

Q-divisor D for which we only know that (X,D) is not log canonical, where Bi ⊆ Supp(B)
for B an effective divisor that we understand. Then we can use intersection theory on Bi and

D. Together with Lemma 2.3.9 in section 2.3, the following results are an essential tool for

computations.

Lemma 2.1.19. Let X be a Q-factorial variety, D and B effective Q-divisors on X. If (X,D)
and (X,B) are log canonical then, for all α ∈ [0,1] ∩Q, the pair

(X,αD + (1 − α)B)

is log canonical.

Proof. Let f ∶Y → X be any proper birational morphism with exceptional divisor ⋃Ei. Then

we may write

αKY + αDY ∼Qαf∗(KX +D) + α∑aiEi,

(1 − α)KY + (1 − α)BY ∼Q(1 − α)f∗(KX +B) + (1 − α)∑ biEi,

where ai ≥ −1, bi ≥ −1, since (X,D), (X,B) are log canonical. Adding the two equivalences,

we obtain

KY + αDY + (1 − α)BY ∼Qf∗(KX + αD + (1 − α)B) +∑(αai + (1 − α)bi)Ei.

Observe that

αai + (1 − α)bi ≥ −α − (1 − α) = −1

so (X,αD + (1 − α)B) is log canonical.

Often, we will use the following corollary:

Corollary 2.1.20. Let X be a Q-factorial variety, D and B effective Q-divisors on X, with

D∼QB. If (X,D) is not log canonical but (X,B) is log canonical, then there is α ∈ [0,1) ∩Q
such that the pair

(X,D′ ∶= 1

1 − α(D − αB))

is not log canonical, D′ is effective and the support of D′ does not contain at least one of the

irreducible components of B. Observe that D′∼QD.
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Proof. Suppose (X,D′) is log canonical. Then (X, (1−α)D′ +αB) is log canonical by Lemma

2.1.19, but this is impossible, since (1 − α)D′ + αB =D.

We may write D = ∑ni=1 diDi +Ω, B = ∑ni=1 biDi where Ω is an effective Q-divisor such that

for all i, di ≥ 0, bi > 0 and Di /⊆ Ω. We need to show how to choose α. If di = 0 for some i then

take α = 0. Hence D′ =D and Bi /⊆ Supp(D′). Now, assume all di > 0. Let

α = min{di
bi

∶ bi ≠ 0} .

Observe that α < 1, since otherwise

0 ≤D −B∼Q0

and D = B. Hence, for some i we have Bi /⊆ Supp(D′), finishing the proof.

Corollary 2.1.21 (log convexity). Let X be a Q-factorial variety. Suppose (X,A+D1) is not

log canonical and (X,A +D2) is log canonical where A,D1,D2 are effective Q-divisors, such

that D1∼QD2. There is λ ∈ [0,1)⋂Q such that

D3 =
1

1 − λ(D1 − λD2),

is effective, Supp(D3) does not contain at least one of the components of D2 and (X,A +D3)
is not log canonical.

Proof. By Corollary 2.1.20, the pair

(X, 1

1 − λ(A +D1 − λ(A +D2)))

is not log canonical. This is the same pair as in the statement.

Lemma 2.1.22. Let 0 < β ≤ 1 and 0 < λ ≤ 1. Let X be a non-singular Fano variety and

∆ ∼ −KX be a non-singular irreducible and reduced hypersurface. Let D∼Q −KX be an effective

Q-divisor such that

(X, (1 − β)∆ + λβD) (2.1)

is not log canonical at some p ∈ X and λβ ≤ glct(X). Then p ∈ ∆. and the pair (2.1) is log

canonical in codimension 1.

Proof. Since X and ∆ are non-singular, then (X, (1−β)∆+λβ∆) is log canonical. In particular,

by Corollary 2.1.21, we may assume that ∆ /⊆ Supp(D).
If (X, (1−β)∆+λβD) is log canonical at all points in ∆, then (X,λβD) is not log canonical,

which is impossible since λβ ≤ glct(X) and D∼Q −KX . Therefore p ∈ ∆.

If the pair (2.1) is not log canonical along a hypersurface Di, then Di = ∆, by the same

argument. However, then 1 − β > 1, which is impossible.

2.2 Tigers and cats

In this section we develop a setting to classify pairs (X,D) which are not log canonical, where

X is a normal Fano variety and D an effective Q-divisor with D∼Q−KX . When the propoposed

setting is possible the classification is very precise, giving an accurate desription of Supp(D)An

an application we obtain an easy way to compute glct(X,∆) and α(X, (1 − β)∆). When this
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classification is possible for X, we have coined the expression the Cat Property holds on X for

reasons given below.

Our original motivation to develop this theory was to study birational maps between del

Pezzo fibrations. The classification of non log-canonical pairs plays an important role in this

setting, as hinted in [Che05]. While unsuccessfully working on this problem, the author realised

that when the Cat Property holds, the computation of the dynamic α–invariant becomes almost

trivial, as shown below in Lemma 2.2.12.

The author found out later that for a non-singular complex del Pezzo surface S of low

degree, the Cat Property plays an important role when showing there is no non-trivial Ga-

action on Aut(Ŝ), the automorphism group of the affine cone of S. The study of this problem

has been pioneered by T. Kishimoto, Y. Prokhorov and M. Zaidenberg. In [KPZ11b], the

authors showed that such a Ga–action exists when degS ≥ 4. In [KPZ12a] a criterion of

existence for the Ga–action is provided. The study of this problem for 3-folds has been started

in [KPZ11a]. In [KPZ12b], the case of non-singular del Pezzo surfaces of low degrees is studied,

proving the non-existence of a non-trivial Ga action when 1 ≤ degS ≤ 2. The Cat Property is

implicitly discussed. In particular it follows that if the Cat Property holds for a smooth cubic

surface S, there is no non-trivial Ga-action on Aut(Ŝ). While the author showed that the Cat

Property holds on cubic surfaces (Theorem 3.2.9), the same result was proved independently

by I. Cheltsov, J. Park and J. Won in [CPW13]. J. Park and J. Won originally arrived to

this problem motivated by a semi-local version of Tian’s α–invariant proposed by F. Ambro in

[Amb06].

In [KM99] Keel and McKernanintroduced the concept of tiger, possibly as an inside joke

following Miles Reid’s general elephant conjecture. A general elephant, as coined by Miles Reid

in [Rei87], is a general element of the anti-canonical linear system and therefore expected to have

good singularities. A tiger would be somewhat the opposite, an element in the anti-canonical

class with very bad singularities. Colorful names aside, the advantage of this term is that it

allow us to use just one word to summarise a long list of conditions:

Definition 2.2.1. Let X be a Q-factorial projective Fano variety with klt singularities. Let

(X,D) be a log pair where D is an effective Q-divisor with D∼Q −KX . If (X,D) is not log

canonical we will call D a tiger.

Note that for a tiger D we have lct(X,D) < 1. Actually, in [KM99], tigers included also

any effective Q-divisor D∼Q −KX such that (X,D) is not klt (i.e. lct(X,D) ≤ 1). In [KM99]

such D is actually called a special tiger, reserving the name tiger for a divisor E over X with

discrepancy a(X,D,E) ≤ −1. We will stick to Definition 2.2.1 since it fits better our purposes.

We are interested in tigers in ∣ −mKX ∣ for m small, which will be called cats. In order to

define a cat precisely, we need the following:

Definition 2.2.2. Suppose X satisfies Conjecture 2.1.18, i.e. there is an effective Q-divisor D

such that D∼Q −KX and glct(X) = lct(X,D). We define the Cat index of X as:

Cat(X) = min{m ∈ Z>0 ∶ glct(X) = lct(X, 1

m
D) for D ∈ −mKX ∣}.

If X does not satisfy Conjecture 2.1.18, then define Cat(X) = ∞.

Example 2.2.3. From Theorem 1.2.5, we have glct(P2) = 1
3
. Let L b e a line in P2. Then

lct(P2,3L) = 1
3
. Since 3L ∈ ∣−KP2 , then Cat(P2) = 1. In particular D1 = 3L or D2 = {y2z−x3 = 0}
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are cats since D1,D2 ∈ ∣ −KP2 ∣ but (P2,D1) and (P2,D2) are not log canonical.

Definition 2.2.4. If D is a tiger of X with mD ∈ ∣ −mKX ∣ and m ≤ Cat(X), then we say that

D is a cat.

Definition 2.2.5. We say that a set U ⊆ X satisfies the Cat Property, or that the Cat

Property holds on U , if for all tigers D∼Q −KX such that (X,D) is not log canonical on U ,

there is an effective Q-divisor T∼Q −KX with mT ∈ ∣ −mKX ∣ for some m ≤ Cat(X), such that

Supp(T ) ⊆ Supp(D).

We are mostly interested in the case U =X.

Lemma 2.2.6. Let X be a Fano variety satisfying the Cat Property such that ∃D a tiger of

X. Then there is a cat T with Supp(T ) ⊆ Supp(D).

Proof. If the Cat Property holds on X, by Corollary 2.1.20 we may assume that (X,T ) in

Definition 2.2.5 is not log canonical (i.e. T is a cat). Indeed, suppose that for all effective Q-

divisors T∼Q −KX such that mT ∈ ∣ −mKX ∣ with m ≤ Cat(X) the pair (X,T ) is log canonical.

Then we may subtract Supp(T ) from Supp(D) using Corollary 2.1.20 to obtain another tiger

D′∼Q − KX . Since (X,D′) is not log canonical and for all effective Q-divisors T∼Q − KX

with mT ∈ ∣ −mKX ∣, with m ≤ Cat(X) we have Supp(T ) /⊂ Supp(D), we contradict the Cat

Property.

Lemma 2.2.7. Let S be a non-singular del Pezzo surface. Then Cat(S) = 1.

Proof. This is the first step of the computation of glct(S) where we find a divisor D ∈ vert−KS ∣
such that glct(S) = lct(S,D). See [Che08] or [Mar12].

By far, most Fano varieties do not seem to satisfy the Cat Property. For instance, in the

following two examples Cat(X) < ∞ but we can find sequences of tigers Dm with irreducible

support where min{m ∈ N ∶ mDm ∈ ∣ −mKX ∣}.

Example 2.2.8. Consider in S = P2 the curve given by Cm = {zym + xm+1 = 0}. Locally

around p = (0 ∶ 0 ∶ 1) we have lctp(S,Cm) = 1
m
+ 1
m+1

= 2m+1
m(m+1) by Lemma 2.1.14. Let Dm =

3
m+1

Cm∼Q −KS . Then

lct(S,Dm) = m + 1

3m
lctp(S,Cm) = 2m + 1

3m
< 1

for all m > 1. Note that Cm is irreducible and by Lemma 2.2.7, Cat(P2) = 1, so one can always

find a tiger (P2,Dm) such that no D′ ∈ ∣ −KS ∣ satisfies D′ ⊂ Supp(Dm).

Example 2.2.9. Let π ∶ S̃ = F1 → P2 be the blow-up of p = (0 ∶ 0 ∶ 1) with exceptional curve

E ≅ P1 and let Dm be the Q-divisor in P2 from the previous example. As we will see later, by

Lemma 2.3.5, the pair

(S̃,D′
m = D̃m + ( 3

m + 1
− 1)E) (2.2)

is not log canonical, where D̃m is the strict transform of Dm. Moreover D′
m∼Q −KF1 . The

exceptional curve E is given in local coordinates (x, y) by the equation y = 0. The curve

C̃m, the strict transform of the curve Cm in P2 used in Example 2.2.8, is given locally by the

equation y = xm. Therefore D̃m ⋅E = multpDm = 3m
m+1

> 2 if and only if m > 2. Notice also that

multpDm < 3. Hence, for m > 2, the coefficient of E in (2.2) is bigger than 1, but Supp(D̃m) is
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irreducible and contains no cat in it. Finally the pair in (2.2) is a tiger, since D′
m∼Q −KF̃1

but

lct(F1,D
′
m) ≤ λm for λm = 1/( 3m

m+1
− 1) = m+1

2m−1
< 1 for m > 2.

This is not the only kind of bad behaviour. We can also find simple tigers D whose support

has simple normal crossings but (X,D) is not log canonical in codimension 1, see example

3.2.12. On the other hand all non-singular del Pezzo surfaces S with K2
S ≤ 3 satisfy the Cat

Property (see Lemmas 3.2.2, 3.2.5 and Theorem 3.2.9). This is also the case for any general

point p ∈ S4, a del Pezzo surface of degree 4 (see Lemma 3.2.13). Based on the behaviour in

dimension 2, we formulate the following conjecture:

Conjecture 2.2.10. Let X be a non-singular Fano variety of dimension n ≥ 2. X satisfies the

Cat property if and only if all effective Q-divisors D∼Q−KX are log canonical in codimension 1.

The conjecture is verified in dimension 2 in Corollary 3.2.15. Unfortunately the proof uses

heavily the classification of del Pezzo surfaces and its birational geometry and it does not

provide any deep insight on how the proof should work in higher dimensions. However, should

Conjecture 2.2.10 hold, we could split the study of tigers in two distinct classes, depending

on whether the Cat Property holds or not. This is evidenced by Chapter 4. Indeed, when

computing α(S, (1−β)C) for S a non-singular del Pezzo surface and C a smooth elliptic curve,

the methods used are very different, depending onwhether the Cat Property holds or not.

Let us explore a few applications of the Cat Property. The following is straight forward from

the definition of Cat index: Suppose X satisfies the Cat Property. Then it is straight forward

to compute the global log canonical threshold, since we just need to compute lct(X, 1
m
D) for

very singular D ∈ ∣ −mKX ∣ and 0 <m ≤ Cat(X).

Observation 2.2.11. Let X be a Fano variety on which the cat property holds. Then

glct(X) = min{lct(X,D) ∶ mD ∈ ∣ −mKX ∣, m ≤ Cat(X)}.

Unfortunately so far all proofs to show that a variety satisfies the Cat Property are gener-

alisations of the computation of the global log canonical threshold and in any case we need to

know the global log canonical threshold a priori in order to define Cat(X), which is required

to define the Cat Property. Nevertheless, when present, the Cat Property gives us control over

all tigers of X, which comes useful when studying the dynamic alpha–invariant of a complex

Fano variety:

Lemma 2.2.12. Let X be a complex Fano variety with Cat(X) < ∞. Suppose the Cat Property

holds on X. Suppose ∃∆ ∈ ∣ −KX ∣ a smooth effective divisor. Then

α(X, (1 − β)∆) = lct(X, (1 − β)∆, βT )

for some effective T∼Q −KX such that mT ∈ ∣ −mKX ∣ for some m ≤ Cat(X).

Proof. There are effective Q-divisors D∼Q −KX such that

ω ∶= α(X, (1 − β)∆) ≤ lct(X, (1 − β)∆, βD) ≤ lct(X, (1 − β)∆, β∆) = lct(X,∆) = 1, (2.3)

given that ∆ is smooth. We proceed by contradiction. In particular we may assume ω < 1.

Suppose, for contradiction, that any effective Q-divisor D∼Q−KX for which (2.3) holds satisfies

min{m ∶ mD ∈ ∣ −mKX ∣} > Cat(X).
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Let D be one of those Q-divisors.

Suppose that ∀T , effective Q-divisor with T∼Q−KX and mT ∈ ∣−mKX ∣ for some m ≤ Cat(X)
we have Supp(T ) /⊆ Supp(D). Then, since (X, (1−β)∆+λβD) is not log canonical for λ > ω, in

particular (X, (1−β)∆+βD) is not log canonical, since ω < 1, but (1−β)∆+βD∼Q−KX . Hence

there is some T∼Q −KX with mT ∈ ∣ −mKX ∣ for some d ≤ Cat(X) and Supp(T ) ⊆ Supp(D), by

the Cat Property, a contradiction.

Therefore ∃Ti ∈ ∣ − niKX ∣ with ni ≤ Cat(X) such that Supp(Ti) ⊆ Supp(D) for 1 ≤ i ≤ k for

some positive number k = k(D) depending on D. By assumption

lct(X, (1 − β)∆, β
ni
Ti) > lct(X, (1 − β)∆, βD) ≥ ω.

Therefore the pair

(X, (1 − β)∆ + λβ
ni
Ti)

is log canonical for all 1 ≤ i ≤ k(D) and some λ > ω and the pair

(X, (1 − β)∆ + λβD)

is not log canonical. In particular 1
ni
Ti ≠D, ∀i.

Let D0 =D. By Corollary 2.1.21 ∃a1 ∈ [0,1) ∩Q such that

D1 ∶=
1

1 − a1
(D0 −

a1

n1
T1)∼Q −KX

is effective, T1 /⊂ Supp(D1) and (X, (1 − β)∆ + λβD1) is not log canonical for some λ > ω.

By Corollary 2.1.21, for each 2 ≤ i ≤ k(D) = k, ∃ai ∈ [0,1) ∩Q such that

Di ∶=
1

1 − ai
(Di−1 −

ai
ni
Ti)∼Q −KX

is effective, T1, . . . , Ti /⊂ Supp(Di) and the pair

(X, (1 − β)∆ + λβDi)

is not log canonical for some λ > ω. In particular, the pair

(X, (1 − β)∆ + βDk)

is not log canonical, since we can choose 1 ≥ λ > ω. The pair (X, (1 − β)∆ + β∆) = (X,∆)
is log canonical. Therefore, by Corollary 2.1.20, the pair (X,Dk) is not log canonical. By

construction, Supp(B) /⊆ Supp(DK) for all effective Q-divisors B∼Q − KX such that mB ∈
∣ −mKX ∣ for some m ≤ Cat(X). This contradicts the Cat Property.

Corollary 2.2.13. Let X be a complex Fano variety with Cat(X) < ∞. Suppose the Cat

Property holds on X. Let ∆ ∈ ∣ −KX ∣ be a smooth effective divisor. Then

α(X, (1 − β)∆) = min{1,min{lct(X, (1 − β)∆, βT ) ∶ T is a cat of X}}.
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2.3 Log pairs on surfaces and intersection theory

Most of the surfaces we will deal with will be smooth. However, occasionally, we will deal with

surfaces with canonical singularities. We first introduce Du Val singularities.

Definition 2.3.1 ([KM98, Def. 4.4]). A normal surface singularity (0 ∈ S) with minimal

resolution f ∶S′ → S is called a Du Val singularity if and only if KS′ ⋅Ei = 0 for every exceptional

curve Ei ⊂ S′.

Du Val singularities have a very explicit classification:

Theorem 2.3.2 ([KM98, Thm 4.22]). Every Du Val singularity has embedding dimension 3. Up

to a local analytic change of coordinates, the following is a complete list of Du Val singularities:

(A) . The singularity An (n ≥ 1) has equation x2+y2+zn+1 = 0 and dual graph with n vertices:

○ ⋯ ○

(B) . The singularity Dn (n ≥ 4) has equation x2 + y2z + zn−1 = 0 and dual graph with n

vertices:

○

○ ⋯ ○ ○

(C) . The singularity E6 (respectively E7, respectively E8) has equation x2 + y3 + z4 = 0

(respectively x2+y3+yz3 = 0, respectively x2+y3+z5 = 0) and dual graph with 6 (respectively

7, respectively 8) vertices:

○

○ ⋯ ○ ○ ○

If S′ is a smooth surface and E ⊂ S′ a collection of proper rational (−2)-curves whose dual

graph is listed above, then E ⊂ S′ is the minimal resolution of a surface 0 ∈ S which has the

corresponding Du Val singularity at 0.

Theorem 2.3.3 ([KM98, Thm 4.20]). Let (0 ∈ S) be the germ of a normal surface singularity.

The following are equivalent:

(i) (0 ∈ S) is canonical.

(ii) (0 ∈ S) is Du Val.

Notation 2.3.4. Let S be a surface with canonical singularities. By [KM98, 4.11, 4.19] S is

Q-factorial. Let f ∶ S̃ → S be a birational morphism and D be a Q-divisor in S with proper

transform D̃. Then we can write the log pullback of (S,D) by f as

KS̃ + D̃ +
r

∑
i=1

aiEi ≡ f∗(KS +D),

where Ei are exceptional curves (Ei ≅ P1,E2
i < 0) and ai are rational numbers.
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Often f ∶ S̃ → S will be the blow-up of a point p with exceptional curve E. Other times f

will be the minimal log resolution of (S,D). This will be clear from the context, when not

explicitly stated. We will denote the strict transform of any Q-divisor B in S̃ by B̃.

Lemma 2.3.5. The log pair (S,D) is log canonical if and only if

(S̃, D̃ +
r

∑
i=1

aiEi) (2.4)

is log canonical. In particular when f ∶ S̃ → S is the blow-up of a point p ∈ S with exceptional

divisor E, the pair (S,D) is log canonical at p if and only if

(S̃, D̃ + (multpD − 1)E)

is log canonical for all q ∈ E.

Proof. If (S̃, D̃ +∑aiEi) is log canonical, there is a log resolution g∶ S̄ → S̃ of (S̃, D̃ +∑aiEi)
with exceptional divisors Fj such that its log pullback is

g∗(KS̃ + D̃ +∑aiEi) =KS̄ + D̄ +∑aiĒi +∑ bjFj

where ai ≤ 1 and bj ≤ 1, ∀i, j. Since f ○ g is a log resolution for (S,D) with log pullback

(f ○ g)∗(KS +D) =KS̄ + D̄ +∑aiĒi +∑ biF̄i,

the pair (S,D) is log canonical.

If (S,D) is log canonical then there is a log resolution f ′∶ S̄ → S consisting of blow-ups.

Since there is a birational map S̄ ⇢ S, there is a smooth surface Ŝ and birational morphisms

g′∶ Ŝ → S̄ and g∶ Ŝ → S̃, such that f ○ g = f ′ ○ g′. In particular, by the previous implication

(S̃, D̃ +∑aiEi) is log canonical.

In this section we deal with a pair (S,D) (or (S,ωD) for some ω ∈ Q ∩ [0,1]) where S is

a non-singular surface. Let p ∈ S and D∼Q −KS be an effective Q-divisor such that (S,D)
(respectively (S,ωD)) is not log canonical at p.

Lemma 2.1.19 and corollaries 2.1.20 and 2.1.21 have the following 2-dimensional versions

that we will use often:

Lemma 2.3.6. Let S be a surface with canonical singularities, D and B be effective Q-divisors

on S. If (S,D) and (S,B) are log canonical then, for all α ∈ [0,1] ∩Q, the pair

(S,αD + (1 − α)B)

is log canonical.

Lemma 2.3.7 (Convexity). Given S non-singular (at p), let D,B be effective Q-divisors on

S such that (S,B) is log canonical (at p) and (S,D) is not log canonical (at p). Then, for all

α ∈ [0,1)⋂Q, the pair

(S,D′ = 1

1 − α(D − αB))

is not log canonical (at p). Moreover if D∼QB, then D′∼QD and we can choose α such that

∃Bi irreducible curve (p ∈ Bi) in the support of B with Bi /⊂ Supp(D′) where D′ is effective.
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Lemma 2.3.8 (Log-convexity). Let X be a Q-factorial variety. Suppose (X,A+D1) is not log

canonical and (X,A +D2) is log canonical where A,D1,D2 are effective Q-divisors, such that

D1∼QD2. There is λ ∈ [0,1)⋂Q such that

D3 =
1

1 − λ(D1 − λD2),

is effective, Supp(D3) does not contain at least one of the components of D2 and (X,A +D3)
is not log canonical.

Let S be a smooth surface. Suppose (S,A +D1) is not log canonical and (S,A +D2) is log

canonical where A,D1,D2 are effective Q-divisors, such that D1∼QD2. There is λ ∈ [0,1)⋂Q
such that

D3 =
1

1 − λ(D1 − λD2),

is effective, Supp(D3) does notcontain at least one of the components of D2 and (S,A+D3) is

not log canonical.

2.3.1 Classical local inequalities

The following result is well known and it can be found (when the ground field is C) on [Che08].

Our proof for algebraically closed fields can also be found in [Mar12].

Lemma 2.3.9. Let S be a non-singular surface, D be an effective Q-divisor and C be an

irreducible curve on the surface S. We may write D = mC + Ω, where m ≥ 0 is a rational

number, and Ω = ∑aiΩi is an effective Q-divisor such that C /⊂ Supp(Ω). Suppose the pair

(S,D) is not log canonical at some point p ∈ S such that p ∈ C. The following are true:

(i) multpD > 1.

(ii) If C ⊂ LCS(S,D), then m ≥ 1. In particular, if D is not log canonical along C, then

m > 1.

(iii) If m ≤ 1 and p ∈ C with C non-singular at p, then C ⋅Ω > 1.

Proof. Part (ii) is straight forward from the definition of LCS(S,D). For (i) and (iii) suppose

(S,D) is not log canonical. Consider f ∶ S̃ → S, the minimal log resolution of (S,D), where the

components of f−1(D) have simple normal crossings. By Lemma 2.3.5, the pair

(S̃, D̃ +∑aiEi)

is not log canonical. We do induction onthe number N of exceptional divisors of f .

For the induction hypothesis we assume that (i) and (iii) hold if the minimal log resolution

of a pair consists on at most N blow-ups. Suppose the log resolution of (S,D) consists of (N+1)
blow-ups. Let σS1 → S be the blow-up of p with exceptional divisor E1. Since the minimal

log resolution is unique, f factors through S1, i.e. there is a birational morphism g∶ S̃ → S1

consistsing of N blow-ups, such that f = σ ○ g. By Lemma 2.3.5, the pair

(S1,D1 + (multpD − 1)E1) (2.5)

is not log canonical at some q ∈ E1, where D1, C1 and Ω1 are the strict transforms of D C and

Ω, respectively.
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We will prove (i) first, and then (iii). For (i), in the initial step of induction, D is smooth

at p, so we can assume D = aD1 around p. Since (S,D) is not log canonical, a > 1, so

multp(D) = a > 1. If D is not smooth, then the pair (2.5) is not log canonical and its log

resolution consists of N blow-ups. Therefore we may apply the induction hypothesis to show

1 < multqD1 + (multpD − 1) ≤ 2multpD − 1

which implies multpD > 1.

For (iii) we observe that Supp(D) is not smooth at p. If it was, then D = mC near p and

m > 1 since (S,D) is not log canonical. The initial step for the induction occurs when (2.5) is

already a log resolution. Then

1 < multpD − 1 = multpΩ +m − 1 ≤ multpΩ ≤ C ⋅Ω,

proving the claim.

Suppose multpD − 1 < 1. Then the pair (2.5) is not log canonical at some point q ∈ E1 and

log canonical near q. The log resolution of the pair (2.5) consists of N blow-ups and we can

assume (iii) is verified for (2.5) by the induction hypothesis, where we substitute C by C1 or

E1. If q ∈ C1, then by the induction hypothesis

1 < C1 ⋅ (Ω1 + (multpD − 1)E1) = C ⋅Ω +m − 1 ≤ C ⋅Ω

since m ≤ 1. If q /∈ C1, then the pair

(S1,Ω1 + (multpD − 1)E1)

is not log canonical at q and by the induction hypothesis we have

1 < E1 ⋅Ω1 = multpΩ ≤ C ⋅Ω.

2.3.2 New local inequalities

In this section we prove a few theorems on the local behaviour of pairs which fail to be log

canonical. Let (S,D = ∑aiDi) be a log pair where S is a smooth surface and D is an effective

Q-divisor.

Lemma 2.3.9 gives a basic characterisation of when (S,D) is not log canonical. Either

∃ai > 1, or at some point p the curves in Supp(D) are very singular with 1 ≥ ai ≫ 0 for enough

Di such that p ∈Di. In the first case we say that (S,D) is not log canonical along Di or (S,D)
is not log canonical in codimension 1. If all ai ≤ 1 but (S,D) is not log canonical, then it is not

log canonical in a finite number of points by Lemma 2.3.9 (ii). If p is one of those points we

say that p is a locus of non-log canonical singularities for (S,D) or, if no confusion is likely, we

simply say that p is isolated.

The general philosophy is that we should treat separately the cases for which (S,D) is not

log canonical in codimension 1 and those for which (S,D) has an isolated locus of non-log

canonical singularities. However, in both cases it will be useful to bound the coefficients ai.
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Furthermore, when p is an isolated locus of non-log canonical singularities of (S,D), we will

also be interested in bounding multpD.

If (S,D) is not log canonical in codimension 1, bounding the coefficients of D is relatively

simple using intersection theory. All the theorems in this section deal with the isolated case.

We will use intersection theory both in the statements and the proofs of these results to bound

the multiplicities and coefficients. All these results make frequent use of Lemma 2.3.9 (i) and

(iii). In some way, they can be seen as applications of that simple fact. While stated in a

general setting, these results will come useful in different particular situations, according to the

intersection theory of the curves involved.

Theorem 2.3.10 is rather elementary. Although it has a technical statement, it reduces to

mimick the procedure involved when finding the minimal log resolution of a pair (S, (1−β)C +
λβD) which is log canonical in codimension 1, where C is a smooth curve and λ,β are arbitrary

coefficients.

The next result is Theorem 2.3.11. This Theorem reflects the nature of how these local

inequalities are found. Once we know which statement we want to prove (providing it is true),

the proof is easy to obtain by induction. However finding a strong statement is not easy.

Theorem 2.3.11 is a generalisation of a result of D. Kosta, [Kos09, Thm 2.21], which had a

non-symmetric statement. While we provide our own proof, the credit to finding the statement

of the Theorem, which is the difficult part, belongs to I. Cheltsov. Theorem 2.3.11 is only useful

for us other when studying the intersection of two lines, mainly in order to shorten the use of

Theorem 2.3.10. However the Theorem is really powerful and I. Cheltsov, in [Che], has used

it to reprove many known results on global log canonical thresholds in a more efficient way.

Another inequality that implies Kosta’s original result can be found in [CK10]. Their result

and Theorem 2.3.11 do not imply one another. A generalisation of both Theorem 2.3.11 and

[CK10], if it exists, remains yet to be found.

Finally, the last result of this section is Theorem 2.3.12. We use this Theorem in the

computation of the dynamic alpha–invariant of del Pezzo surfaces of degrees 7–9. The proof

is the most involved, which is why we have left it at the end. While proving this result we

noticed we could get, as a by-product, a lower estimate on the number of exceptional curves in

the minimal log resolution of a given log pair. This was as an unexpected result and it suggests

that the number of exceptional curves in the minimal log resolution of a log pair and the log

canonical threshold of the pair are closely related.

In the following Theorem we could take λ = 1 but since all the applications use a number

0 < λ ≤ 1, we include λ for the reader’s convenience.

Theorem 2.3.10. Let S = S0 be a surface which is non-singular at q = q0 ∈ C, where C = C0 is

a smooth curve. Let 0 < β ≤ 1 be a rational number, 0 < λ ≤ 1 and D0 be an effective Q-divisor

such that

(S0, (1 − β)C0 + λβD0) (2.6)

is a pair which is not log canonical at q = q0 but is log canonical near q.

Let f1∶S1 → S0 be the blow-up of q0 with exceptional divisor F1. Let C1 D1 be the strict

transforms of C0, D0, respectively.

Let i ≥ 2. Let fi∶Si → Si−1 be the blow-up of qi−1 = Ci−1 ∩ Fi−1 with exceptional divisor

Fi. Denote by Ai the strict transform in Si of any Q-divisor Ai−1 of Si−1. In particular let

Di,Ci, F ii−1, F
i
j be the strict transforms of Di−1,Ci−1, Fi−1, F

i−1
j , respectively. Let mi = multqiD

i

for i ≥ 0.
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(i) If i = 1 then the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some r1 ∈ F1.

If i ≥ 2, the pair

(Si−1, (1 − β)Ci−1 + λβDi−1 + (λβ(
i−2

∑
j=0

mj) − (i − 1)β)Fi−1) (2.7)

is not log canonical at qi−1 = Ci−1 ∩ Fi−1 and

λβ(
i−2

∑
j=0

mj) − (i − 1)β ≤ 1, (2.8)

then the pair

(Si, (1 − β)Ci + λβDi + (λβ(
i−2

∑
j=0

mj) − (i − 1)β)F ii−1 + (λβ(
i−1

∑
j=0

mj) − iβ)Fi) (2.9)

is not log canonical at some ri ∈ Fi and is log canonical near ri.

Observe that F ii−1 ∩Ci = ∅, since Ci−1 is smooth at qi−1 for all i ≥ 1.

(ii) Suppose i = 1. If λβm0 − β ≤ 1, then r1 = q1 = F1 ∩C1.

Suppose i = 2. If λβm0 ≤ 1 or λβ(m0 +m1) ≤ 1 and in addition to condition (i) we have

λβ(
i−1

∑
j=0

mj) − iβ ≤ 1,

then ri is an isolated locus of non-klt singularities and ri ∈ Fi ∩ (F ii−1 ∪Ci).

(iii) Let i ≥ 2. Suppose the pair (2.7) is not log canonical at qi−1 = Ci−1 ∩ Fi−1, the inequality

λβ(
i−1

∑
j=0

mj) − (i − 1)β ≤ 1

holds, and λβm0 ≤ 1 or λβ(m0+m1)−β ≤ 1 holds. Then the pair (2.9) is not log canonical

only at ri = qi = Fi ∩Ci.

(iv) Let i ≥ 2. Suppose that in addition to (i), inequality

λβ((
i−3

∑
j=0

+mj) + 2mi−2) − iβ ≤ 1

holds where the sum is 0 for i = 2. Suppose further that λβm0 ≤ 1 or λβ(m0 +m1) −β ≤ 1

holds. Then the pair (2.9) is not log canonical only at ri = qi = Fi ∩Ci.

Proof. Since the pair (2.6) is log canonical near q0, we may assume it is log canonical in

codimension 1. By Lemma 2.3.5, the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1) (2.10)
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is not log canonical at some r1 ∈ F1. This proves statement (i) for i = 1.

Condition (ii) for i = 1 states that λβm0 − β ≤ 1, which is precisely the condition for (2.10)

to be log canonical along F1 by Lemma 2.3.9 (ii). Moreover, if r1 /∈ C1, then the pair

(S1, λβD
1 + (λβm0 − β)F1) (2.11)

is not log canonical. We apply Lemma 2.3.9 (iii) on F1 to get

1 < λβD1 ⋅ F1 = λβm0 ≤ 1,

a contradiction.

Now suppose i ≥ 2. We prove first part (i). If the pair (2.6) is not log canonical at qi−1 and

(2.8) holds then (2.6) is log canonical near qi−1 and by Lemma 2.3.5, the pair (2.9) is not log

canonical at some ri ∈ Fi. Since C0 is smooth at q0 and we are blowing-up smooth points in

Ck, Ck is smooth at qk for all 0 ≤ k ≤ i. Therefore Ck ⋅ Fk = 1 for all 0 ≤ k ≤ i. In particular

Ck ⋅ F kk−1 = 0 for all k < i, so Ci ∩ F ii−1 = ∅. Since Ci ≠ F ii−1 and both curves are irreducible at

qi, we proved (i).

For (ii), suppose λβ(∑i−1
j=0mj) − iβ ≤ 1. This implies that ri is an isolated locus of non-klt

singularities for the pair (2.9) (see Lemma 2.3.9 (ii)). Moreover if ri ∈ Fi ∖(F ii−1 ∪Ci), then the

pair

(Si, λβDi + ((λβ
i−1

∑
j=0

mj − iβ)Fi))

is not log canonical at ri. If λβm0 ≤ 1, then

1 < λβDi ⋅ Fi = λβmi ≤ λβm0 ≤ 1

by Lemma 2.3.9 (iii), giving a contradiction. Therefore λβ(m0 +m1) − β ≤ 1 and λβm0 > 1.

Then λβm1 −β ≤ 1−λβm0 < 0, so λβmk ≤ λβm1 < β for 1 ≤ k ≤ i−1. We obtain a contradiction

via Lemma 2.3.9 (i):

1 < multri(λβDi + ((λβ
i−1

∑
j=0

mj) − iβ)Fi)

= λβmultriD
i + λβ(

i−1

∑
j=0

mj) − iβ

≤ λβ(mi−1 +
i−1

∑
j=0

mj) − iβ

≤ λβ(m0 +m1) − β ≤ 1.

This finishes the proof of (ii).

Notice that the hypothesis of (iii) implies (i) and (ii):

λβ(
i−2

∑
j=0

mj) − (i − 2)β ≤ λβ(
i−1

∑
j=0

mj) − (i − 1)β ≤ 1

λβ(
i−1

∑
j=0

mj) − iβ ≤ λβ(
i−1

∑
j=0

)mj − iβ + β ≤ 1.
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Therefore ri ∈ Fi ∩ (F ii−1 ∪Ci). If ri = F ii−1 ∩ Fi, then ri /∈ Ci and the pair

(Si, λβDi + ((λβ
i−2

∑
j=0

mj) − (i − 1)β)F ii−1 + (λβ(
i−1

∑
j=0

mj) − iβ)Fi) (2.12)

is not log canonical at ri. Applying Lemma 2.3.9 (iii) with Fi we obtain

1 < (λβDi + ((λβ
i−2

∑
j=0

mj) − (i − 1)β)F ii−1) ⋅ Fi = λβ
i−1

∑
j=0

mj − (i − 1)β ≤ 1,

which is absurd.

For (iv), observe that the hypotheses imply the hypotheses of part (ii) of this lemma:

λβ(
i−1

∑
j=0

mj) − iβ = λβ(
i−3

∑
j=0

mj +mi−2 +mi−1) − iβ ≤ λβ((
i−3

∑
j=0

mj) + 2mi−2) − iβ ≤ 1.

where we use mj ≤ mk for all k ≤ j. Hence ri ∈ Fi ∩ (Ci ∪ F ii−1). If ri = Fi ∩ F ii−1, then the

pair (2.12) is not log canonical at ri. Then, by Lemma 2.3.9 (iii) applied with F ii−1 we get a

contradiction:

1 < (λβDi + (λβ(
i−1

∑
j=0

mj) − iβ)Fi) ⋅ F ii−1 = λβ(
i−3

∑mj + 2mi−2) − iβ ≤ 1.

Therefore ri = qi = Ci ∩ F ii−1.

Theorem 2.3.11 (See [Che]). Let S be a surface and p ∈ S be a non-singular point. Let

(S, a1C1 + a2C2 +Ω)

be a log pair which is not log canonical at p ∈ S but log canonical near p. Suppose that (C1 ⋅C2)∣p =
1, C1,C2 are smooth at p and C1,C2 /⊆ Supp(Ω). Suppose that a1 > 0, a2 > 0 and 0 < multpΩ ≤ 1.

Then

(Ω ⋅C1)∣p > 2(1 − a2) or (Ω ⋅C2)∣p > 2(1 − a1).

Proof. First observe that if a1 ≥ 1 or a2 ≥ 1 the statement is trivial. Hence, assume that

a1, a2 < 1. Hence the pair

(S,D = a1C1 + a2C2 +Ω)

is log canonical in codimension 1 but not at p. Therefore there is a birational morphism f ∶ Ŝ → S

with exceptional divisors Ei which is biregular away from p, consisting on N blow-ups of points

infinitely near p and such that the log pullback

f∗(KS +D)∼QKŜ + D̂ +
N

∑
i=1

biEi

satisfies bN > 1 where D̂ is the strict transform of D in Ŝ. We will proceed by induction on N .

By the nature of induction, it is enough to study the situation for the first blow-up σ∶ S̃ → S of

p with exceptional divisor E. By Lemma 2.3.5 the pair

(S̃, a1C̃1 + a2C̃2 + Ω̃ + (multpΩ + a1 + a2 − 1)E)
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is not log canonical at some point q ∈ E. If N = 1 then multpΩ+a1+a2 > 2. In this case, Lemma

2.3.9 (iii) gives

1 < C̃1 ⋅ (Ω̃ + (a1 + a2 +multpΩ − 1)E + a2C̃2)∣C̃1∩E

and

1 < C̃2 ⋅ (Ω̃ + (a1 + a2 +multpΩ − 1)E + a1C̃1)∣C̃2∩E ,

which implies

(C1 ⋅Ω)∣p > 2 − a1 − a2 (C2 ⋅Ω)∣p > 2 − a1 − a2,

since C̃1 ⋅ C̃2 = 0. If a1 ≥ a2 then the second inequality gives (C2 ⋅Ω) > 2 − a1 − a1 ≥ 2(1 − a1).
Conversely, if a1 ≤ a2, then the first inequality gives (C1 ⋅Ω)∣q > 2(1 − a2).

Therefore N > 1 and multpΩ + a1 + a2 − 1 ≤ 1. If q /∈ C̃1 ∪ C̃2, then Lemma 2.3.9 (iii) implies

multpΩ = E ⋅ Ω̃ > 1,

which is impossible. Hence either q ∈ C̃1 or q ∈ C̃2. Without loss of generality, suppose the

former. Then the pair

(S̃, a1C̃1 + (multpΩ + a1 + a2 − 1)E1 + Ω̃)

is not log canonical at q ∈ C̃1. But the function f̃ ∶ Ŝ → S̃ by the factorisation of f = σ ○ f̃ where

E1 = E, consists of N − 1 blow-ups. Therefore, by the induction hypothesis either

(C1 ⋅Ω)∣p −multpΩ = (C̃1 ⋅ Ω̃)∣q > 2(1 −multpΩ − a1 − a2 + 1) = 2(1 − a2) + (2 − 2multpΩ − a1)

or

(C2 ⋅Ω)∣p ≥ multpΩ ≥ E1 ⋅Ω > 2(1 − a1).

The Lemma follows, since a1 + multpΩ ≤ 2 − a2 ≤ 2, so the first equation gives (C1 ⋅ Ω)∣p >
2(1 − a2).

Theorem 2.3.12. Let S be a non-singular surface and C an irreducible curve, non-singular at

p ∈ C. Let ∆ be an effective Q-divisor such that C /⊆ Supp(∆). Suppose the pair

(S, (1 − β)C +∆), 0 < β ≤ 1 (2.13)

is not log canonical at p ∈ C but it is log canonical in codimension 1 near p. If

multp∆ ≤ min{1,
1

n
+ β} for some n ∈ N,

then

(∆ ⋅C)∣p > 1 + nβ.

Moreover if N is the minimum number of blow-ups required to resolve the pair (2.13), then

N > max{n ∈ N ∶ multp∆ ≤ 1

n
+ β}.

Proof. The case β = 1 is trivial by Lemma 2.3.9 (i), since then

(C ⋅∆)∣p ≥ multp∆ > 1,
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and the hypothesis is vacuous. Hence we may assume β < 1. First note that the pair (2.13)

cannot non-singular support at p, since if this was the case, then we could assume ∆ = aZ
where Z is an irreducible curve with p ∈ Z, Z smooth at p. But (2.13) not being log canonical

and being non-singular at p implies that a > 1 and then

1 < a = multp∆ ≤ 1,

a contradiction.

Consider the minimal log resolution of the pair (2.13) at p. It consists of N ≥ 1 blow-ups

σi∶Si → Si−1 of points pi−1 ∈ Ei−1 with exceptional curves Ei where p0 = p and S0 = S where pi

is a point in which the log pullback of the pair (2.13) via the composition σ1 ○⋯ ○ σi is not log

canonical by Lemma 2.3.5. Denote by ∆i and Ci the strict transforms Si of the divisors ∆ and

C respectively. Let mi = multpi∆i.

We claim that after each blow-up the log pullback of the pair (2.13) is not log canonical only

at pi = Ci ∩Ei. As a consequence the exceptional locus of σ1 ○ ⋯ ○ σi is a chain of exceptional

divisors. We will prove this assertion and the rest of the lemma by induction on the number of

blow-ups. The initial step is when no blow-up are needed to achieve simple normal crossings,

which is proven already. Assume we have blown-up p and points infinitely close to p at most

k − 1 times where k ≤ n.

Induction hypothesis: For 1 ≤ l ≤ k − 1 the log pullback of the pair (S, (1 − β)C0 +∆0)
via σ ∶= σ1 ○ ⋯ ○ σl is

(Sl, (1 − β)Cl +∆l +
l

∑
i=1

((
i

∑
j=1

mj−1) − iβ)Ei) (2.14)

which is not log canonical only at pl = El ∩Cl and

l

∑
j=1

ml−1 − lβ ≤ 1

(i.e. the pair (2.14) is log canonical in codimension 1).

Notice that since C0 = C is smooth, then Cl is smooth and since pi ∈ Ci for all i, then

Cl ⋅Ei = δil =
⎧⎪⎪⎨⎪⎪⎩

1 i = l,
0 i ≠ l.

Suppose further that

Ei ⋅Ej =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 ∣i − j∣ = 1,

−1 i = j,
0 otherwise,

for 1 ≤ i < j ≤ k − 1. Furthermore, given that pi ∈ Ci ∩Ei we have that

Cl ∼ σ∗(C) −
l

∑
i=1

Ei,

∆l∼Qσ∗(∆) −
l

∑
i=1

((
i

∑
j=1

mj−1) − iβ)Ei,

for 1 ≤ l ≤ k − 1. This is the end of the induction hypothesis.
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Blowing up pk−1 we obtain that the pair

(Sk, (1 − β)Ck +∆k +
k

∑
i=1

((
i

∑
j=1

mj−1) − iβ)Ei) (2.15)

is not log canonical at some pk ∈ Ek by Lemma 2.3.5. We distinguish four cases.

Case 1: The pair (2.15) is not log canonical in codimension 1. By the induction hypothesis

and Lemma 2.3.9 (ii) we have

1 < (
k

∑
j=1

mj−1) − kβ ≤ km0 − kβ,

but then we obtain a contradiction, since this inequality implies

1

n
+ β ≥ multp∆ =m0 >

1

k
+ β

using the lemma’s assumption in the statement, so k > n but we assumed k ≤ n.

Case 2: The point pk ∈ Ek ∖ (Ck ∪Ek−1). This implies that the pair

(S,∆k + ((
k

∑
j=1

mj−1) − kβ)Ek)

is not log canonical at pk, since pk /∈ Ei for i ≠ k. By case 1 we have ∑ki=1(mj−1)−kβ ≤ 1. Hence,

applying Lemma 2.3.9 (iii) with Ek, we obtain

1 ≥ min{1,
1

n
+ β} ≥ multp∆0 =m0 ≥mk−1 = ∆k ⋅Ek > 1

which is absurd. Therefore pk ∈ Ek ∩ (Ck ∪Ek−1).
Case 3: The point pk = Ek−1 ∩Ek. Not this case only makes sense for k ≥ 2. The pair

(Sk,∆k +
k

∑
i=k−1

((
i

∑
j=1

mj−1) − iβ)Ei)

is not log canonical at pk. Applying Lemma 2.3.9 (iii) with Ek−1 we have that

1 < Ek−1 ⋅ (∆k + ((
k

∑
j=1

mj−1) − kβ)Ek)

= Ek−1 ⋅∆k−1 −mk−1 +
k

∑
j=1

mj−1 − kβ

=mk−2 −mk−1 +
k

∑
j=1

mj−1 − kβ

≤ (k − 1)m0 +m0 − kβ = km0 − kβ,

where we slightly abused the notation in the first equality when identifying Ek−1 ⊂ Sk−1 with

its strict transform in Sk. Reordering and dividing by k we obtain a contradiction:

1

n
+ β ≥m0 = multp∆ > 1

k
+ β

since we assumed that n ≥ k.
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Case 4: The point pk = Ck ∩Ek. Since we reached contradictions in each of the previous

cases, this is the only possibility, which together with case 1 not being possible, proves the

induction. Moreover, note that since pk /∈ Ei for i ≠ k, then the pair

(Sk, (1 − β)Ck +∆k + ((
k

∑
j=1

mj−1) − kβ)Ek)

is not log canonical at pk. By applying Lemma 2.3.9 (iii) with Ck, we obtain

1 <
⎛
⎝
Ck ⋅

⎛
⎝

∆k +
⎛
⎝
⎛
⎝
k

∑
j=1

mj−1

⎞
⎠
− kβ

⎞
⎠
Ek

⎞
⎠
⎞
⎠

RRRRRRRRRRRpk

= (Ck ⋅∆k)∣pk +
k

∑
j=1

mj−1 − kβ

= (C ⋅∆)∣p −
k

∑
j=1

mj−1 +
k

∑
j−1

mj−1 − kβ.

Thus (C ⋅∆)∣p > 1+kβ. If k = n the first assertion of the lemma is proven. For the second notice

that k < N , where N is the number of blow-ups in the minimal log resolution by case 1, since

all the discrepancies are smaller or equal than 1. Hence we have not achieved a log resolution

yet. If k < n we can repeat the inductive step blowing-up pk ∈ Ek until k = n.
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Chapter 3

Log canonical thresholds of del

Pezzo surfaces revisited

This chapter has three sections. In the first one we introduce and give several properties of del

Pezzo surfaces, the main class of varieties studied in this Thesis. The second section studies

the Cat Property we introduced in the previous chapter. As an application, we prove several

cases of Theorem 1.2.5. The last section proves Theorem 1.2.5 when degS = 4.

3.1 Basic properties of del Pezzo surfaces.

In this section we survey several well known results on del Pezzo surfaces. We provide our own

proofs for most of them, given that we have not found proofs adequate to our needs in the

literature. However, most of the results are either well known or simple exercises. For those

results stated without proof we provide an adequate reference. The author learnt most of the

material in this section from [Kol96], [Bea96], [DPT80], [Man86] and [Dol12].

The first result is standard and will be used freely in the rest of this Thesis.

Lemma 3.1.1 (Genus formula, see [Har77, V.1 Ex. 1.3]). Let S be a non-singular surface and

D an effective divisor in S. Then

KS ⋅D +D2 = 2pa(D) − 2

where pa(D) is the arithmetic genus of D. When D is a smooth reduced and irreducible

curve, then pa(D) = g(D).

In the particular case of P2, if C is a curve of degree d, we have

pa(C) = (d − 1)(d − 2)
2

.

Theorem 3.1.2 (Nakai-Moishezon criterion [Har77, V.I.10]). A divisor D on a surface S is

ample if and only if D2 > 0 and D ⋅C > 0 for all irreducible curves C in S.

This theorem suggests the following definitions:

Definition 3.1.3. A del Pezzo surface S over an algebraically closed field k is a non-singular

surface whose anticanonical divisor, −KS is ample. Given any effective Q-divisor D ≠ 0, its
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anticanonical degree (or just degree) is the positive rational number defined by

deg(D) = (−KS) ⋅D.

If S has at worst canonical singularities and D is an effective divisor, then deg(D) is a positive

integer. The degree of S is the positive integer

deg(S) = (KS)2.

We will call effective divisors of degrees 2,3, . . . conics, cubics... respectively, unless the

curve we are dealing with is in P2. The term line is reserved for irreducible curves with self-

intersection (−1). When S = P2, a curve of degree d (or a line, conic, cubic) will be the vanishing

locus of a homogeneous polynomial of degree d, as usual. The following lemma characterises

lines rather precisely. Conics will be characterised in Lemma 3.1.22 when degS ≥ 3.

Lemma 3.1.4. Let S be a non-singular del Pezzo surface. Then every irreducible curve with

a negative self-intersection number is exceptional, i.e. if C is an irreducible curve with C2 < 0

then C2 = −1 and C ≅ P1. Moreover degC = 1.

Proof. The arithmetic genus pa(C) of C, and the geometric genus g(C) satisfy

pa(C) ≥ g(C) ≥ 0 and pa(C) = g(C) ⇔ C is non-singular.

Since C is irreducible, it is enough to show that pa(C) = 0 and C2 = −1. By the genus formula

and using Theorem 3.1.2 with the ample divisor (−KS) we obtain

pa(C) − 2 =KS ⋅ +C2 ≤KS ⋅C − 1 ≤ −2.

Thus pa(C) = 0. But then

−2 = pa(C) − 2 =KS ⋅C +C2 ≤ −1 +C2

so C2 = −1, using again Theorem 3.1.2. It follows from the genus formula that degC = 1. In

particular all (−1)-curves are lines.

Lemma 3.1.5. Let S be a non-singular del Pezzo surface. If C ⊂ S is an irreducible curve such

that (−KS) ⋅C > 1, then C is nef. Moreover if −KS ⋅C > 2 and C is reduced, then C is nef and

big.

Proof. By the genus formula, if C is not a line, then C is nef, since

C2 = −KS ⋅C + 2pa(C) − 2 ≥ 2 + 2pa(C) − 2 ≥ 0

where g is the genus of C. From the same equation we see that if its del Pezzo degree is bigger

than 2, then C2 > 0 and therefore C is big and nef.

Definition 3.1.6. A set of distinct points {p1, . . . , pr} on P2
k with r ≤ 8 are in general position

if no three of them lie on a line, no six of them lie on a conic and a cubic containing 7 points,

one of them double, does not contain the eighth one.

We can classify del Pezzo surfaces:
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Theorem 3.1.7 ([Man86, Chapter IV, Theorems 24.3, 24.4, 26.2]). Let S be a non-singular del

Pezzo surface of degree d. Then 1 ≤ d ≤ 9 and either S = P1 × P1 (degS = 8) or S is a blow-up

of P2 in 9 − d points in general position:

π∶S Ð→ P2.

Conversely, any blow-up of P2 in 9 − d points in general position, for 1 ≤ d ≤ 9 is a del Pezzo

surface of degree d. We call the morphism π a model of S.

Notation 3.1.8. Let S ≠ P1 ×P1 be a non-singular del Pezzo surface and π∶S → P2 be a model

of S contracting n = 9 − degS (−1)-curves (lines). We will denote these curves by E1, . . . ,En

and pi = π(Ei) their images in P2.

Corollary 3.1.9. For S ≠ P1 × P1 a non-singular del Pezzo surface of degree d, we have

Pic(S) ≅ Z10−d,

with generators π∗(OP2(1)),E1, . . . ,E9−d.

For S = P1 × P1, Pic(S) ≅ Z2 with generators the fibres of each ruling P1 × P1 → P1.

Corollary 3.1.10. The anticanonical divisor of a non-singular del Pezzo surface S ≠ P1 × P1

of degree d is

−KS ∼ π∗(OP2(3)) −
9−d
∑
i=1

Ei.

For S = P1 × P1, let L1, L2 be the class of a fibre of each of the rulings S → P1. Then

−KS ∼ 2L1 + 2L2.

We also have the following useful characterisation of del Pezzo surfaces of low degree.

Theorem 3.1.11. Let S be a del Pezzo surface with at worst canonical singularities. Assume

that K2
S ≤ 4. Denote by

Sd1,...,dl ⊂ P(a1, . . . , an)

a complete intersection of hypersurfaces of weighted degree d1, . . . , dl. Then

S ≅ Proj(∑
m≥0

H0 (S,OS (−mKS)))

can be described as follows:

(i) If K2
S = 1, then S ≅ S6 ⊂ P(1,1,2,3) and S is a 2∶1 cover of the singular quadric cone

P(1,1,2) ⊂ P3 branched at the vertex of the cone and at a sextic curve not passing through

the vertex. If S is smooth, then the branching curve is smooth.

(ii) If K2
S = 2, then S ≅ S4 ⊂ P(1,1,1,2) and ∣−KS ∣ gives a morphism φ∶S → P2, which realises

S as a 2∶1 cover of P2 branched at a quartic curve. If S is smooth, then the branching

curve is smooth.

(iii) If K2
S = 3, then S ≅ S3 ⊂ P3.

(iv) If K2
S = 4, then S ≅ S2,2 ⊂ P4, the complete intersection of two quadric hypersurfaces. If

S is smooth then these hypersurfaces can be chosen to be smooth.
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Conversely, any weighted complete intersection as above is a del Pezzo surface of the expected

degree K2
S. Moreover −KS is very ample if degS ≥ 3. For degS = 2, −2KS is very ample. For

degS = 1, −3KS is very ample.

Proof. See [Kol96, III, Thm 3.5] for the smooth case and [DPT80] for the rest. See as well

[Dol12] for a very detailed account with historical notes going back to [DV34a].

No further characterisation is needed for high degrees:

Lemma 3.1.12. For 5 ≤ d ≤ 7 and d = 9 there is a unique non-singular del Pezzo surface

of degree d up to isomorphism. There are precisely two del Pezzo surfaces of degree 8 up to

isomorphism. These are F1 = PP1(OP1(1) +OP1) (the blow-up of P2 at one point) and P1 × P1.

Proof. Let S, S′ be two non-singular del Pezzo surfaces of degree 5 ≤ d ≤ 9, and suppose

that S,S′ /≅ P1. By Theorem 3.1.7, we may assume there are models π∶S → P2 and π′∶S′ → P2

which are blow-up of P2 in points p1, . . . , pl and p′1, . . . , p
′
l, respectively, with exceptional divisors

Ei = π−1(pi) and E′
i = (π′)−1(p′i) where l = 9 − d, 0 ≤ l ≤ 4. Since l ≤ 4, there is σ ∈ PGL(3, k)

an isomorphism such that σ(pi) = p′i for 1 ≤ i ≤ l. Let σ′ be the inverse of σ. The morphisms σ

and σ′ lift to σ̃∶S → S′, sending Ei to E′
i and σ̃′∶S′ → S, sending E′

i to Ei, respectively. Clearly

π ○ σ̃′ ○ σ̃ = π, which is bijective away from Ei and σ̃′ ○ σ̃(Ei) = Ei for all i, so σ̃ ○ σ̃′ is an

isomorphism. We conclude that S and S′ are isomorphic. It is clear than F1 and P1 × P1 are

not isomorphic since the first one has a (−1)-curve and the latter does not (see Lemma 3.1.13

below).

Models are useful ways of understanding del Pezzo surfaces. Since models are defined by

contractions of lines from a del Pezzo surface S to P2, in order to choose a good model for S,

it is important to understand the lines in S, as the following result illustrates.

Lemma 3.1.13. The surface P1 × P1 has no (−1)-curves. Let S ≠ P1 × P1 be a non-singular

del Pezzo surface of degree 1 ≤ d ≤ 9. Then the number of (−1)-curves (lines) of S is given by

Table 3.1.

degS 1 2 3 4 5 6 7 8 9
n = 9 − degS 8 7 6 5 4 3 2 1 0

Number of Lines 240 56 27 16 10 6 3 1 0

Table 3.1: Lines on a non-singular del Pezzo surface S ≠ P1 × P1.

Given a model of S, π∶S → P2, and n = 9−degS, with 0 ≤ n ≤ 8, the lines of S belong to the

rational classes in Table 3.2. Ei are the exceptional divisors, which are mapped by π to points

pi. Lij is the strict transform of the unique line in P2 passing through pi and pj. Ci1⋯i5 is

the strict transform of the unique conic in P2 passing through pi1 , . . . , pi5 . Qi1⋯i7,j is the strict

transform of the unique cubic in P2 passing through pi1 , . . . , pi7 with a double point at pij . Rijk

is the strict transform of the unique quartic in P2 passing through p1, . . . , p8 with double points

at pi, pj , pk. Tij is the strict transform of the unique quintic in P2 passing through p1, . . . , p8

with double points at all pl but pi, pj. Zi is the strict transform of the unique quartic in P2

passing through p1, . . . , p8 with double points at all pl and a triple point at pi.

Proof. If S = P1 ×P1, then −KS ∼ 2F1 + 2F2 where F1, F2 are the classes of the fibre for each of

the rulings S → P1. Since −KS is ample, for any irreducible curve C, we have −KS ⋅C > 0, but

−KS ⋅C = 2((F1 + F2) ⋅C) ≥ 2. Therefore S has no lines.
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Line Rational class Indices rank Rank of n Number
of lines

Ei Ei 1 ≤ i ≤ n 1 ≤ n ≤ 8 n

Lij π∗(OP2(1)) −Ei −Ej 1 ≤ i < j ≤ n 2 ≤ n ≤ 8 (n
2
)

Ci1⋯i5 π∗(OP2(2)) −Ei1 −⋯ −Ei5 1 ≤ i1 < ⋯ < i5 ≤ n 5 ≤ n ≤ 8 (n
5
)

Qi1⋯i7,j π∗(OP2(3)) −Eij −
n

∑
k=1

Eik 1 ≤ i1 < ⋯ < i7 ≤ n 7 ≤ n ≤ 8 7 if n = 7

j = ik, k ∈ {1, . . . ,7} 56 if n = 8

Rijk π∗(OP2(4)) −Ei −Ej −Ek −
8

∑
l=1

El 1 ≤ i < j < k ≤ n n = 8 (8
3
) = 56

Tij π∗(OP2(5)) −
8

∑
l=1
l≠i,j

El −
8

∑
l=1

El 1 ≤ i < j ≤ 8 n = 8 (8
2
) = 28

Zi π∗(OP2(6)) −Ei − 2
8

∑
l=1

El 1 ≤ i ≤ 8 n = 8 8

Table 3.2: Rational classes of lines on a non-singular del Pezzo surface S ≠ P1 × P1 of degree
degS = 9 − n.

If S ≠ P1 × P1, let π∶S → P2 be a model. It follows from Corollary 3.1.10 that all the curves

in the statement with classes in Table 3.2 are lines. We want to show these are all the lines.

Suppose there is a line L ⊂ S. If L ≠ Ei for some i, then L ∼ π∗(OP2(d)) − ∑ni=1 aiEi, where

d ≥ 1 and ai ≥ 0. Then

1 = −KS ⋅L = 3d −∑ai, −1 = L2 = d2 −∑a2
i . (3.1)

By Schwarz’s inequality, for positive integers xi, yi,

(
n

∑
i=1

(xiyi))2 ≤ (
n

∑
i=1

x2
i ) ⋅ (

n

∑
i=1

y2
i )

holds. In particular, if xi = 1 and yi = ai, since ∑ai = 3d − 1 and ∑a2
i = d2 + 1 from (3.1). Then

(3d − 1)2 ≤ n(d2 + 1)

which implies

(9 − n)d2 − 6d − (n − 1) ≤ 0.

Factorising the quadratic equation of variable d, we obtain that for n ≤ 1, then d < 1. If n ≤ 4,

then d < 2. If n ≤ 6, then d < 3. If n = 7, then d < 4 and for n = 8, d < 7. This leaves a finite

number of possibilities for ai to satisfy (3.1). Testing them one by one gives the values in Table

3.2. In particular, the last column of the table allows us to compute the values in 3.1

In principle when the degS is low enough we can find a model that satisfies our needs.

Lemma 3.1.14. Let S be a non-singular del Pezzo surface of degree 5 ≤ d ≤ 6 and let L be a

line in S. We can find a model γ∶S → P2 such that L = E1 under this model.

Proof. Let π∶S → P2 be a model of S. By Lemma 3.1.13, under this model, L = Ei or L = Lij .
In the first case, an obvious relabel of the Ei gives L = E1. It is enough to consider L = L12, by

the same argument.

47



We may define a model γ∶S → P2 by contracting the disjoint curves F1 = L12, F2 = L13, F3 =
L23, since these lines are disjoint, which is easy to check from their rational classes, which are

described in Table 3.2.

In fact Lemma 3.1.14 can be extended to degS ≤ 4 and the proof is essentially the same,

only longer since there are more lines to consider.

Lemma 3.1.15. Let S be a non-singular del Pezzo surface and p a point in S. If there are

three lines L1, L2, L3 such that ⋂Li = {p}, then K2
S ≤ 3. The point p is called an Eckardt

point.

Proof. It follows from Lemma 3.1.13, that when degS ≥ 4, there are no three lines L1, L2, L3 in

Table 3.2 such that L1 ⋅L2 = L2 ⋅L3 = L1 ⋅L3 = 1. This is a necessary condition for the existence

of an Eckardt point.

Eckardt points are named after F. E. Eckardt, who studied them in [Eck76]. We have coined

the following definition, which will turn useful when analysing del Pezzo surfaces of high degree.

Definition 3.1.16. Let S be a non-singular complex del Pezzo surface and L1, L2 two lines

intersecting at a point p. We call p a pseudo-Eckardt point.

The reason for this name is due to the following result.

Lemma 3.1.17. Let S be a non-singular del Pezzo surface and of degree K2
S ≥ 4 and p a

pseudo-Eckardt point of S. There are degS − 3 points {pi}degS−3
i=1 in S such that their blow-up

σ∶ S̃ → S is a del Pezzo surface of degree 3, σ is an isomorphism near p and σ−1(p) is an Eckardt

point.

To prove Lemma 3.1.17 we need an auxiliary result which will become useful later for

different reasons. Theorem 3.1.7 implies that del Pezzo surfaces are rational. The following

result applies to del Pezzo surfaces:

Proposition 3.1.18. For S a non-singular rational surface and C an effective divisor in S

with arithmetic genus pa(C) = 0, we have

h0(S,OS(C)) ≥ (−KS) ⋅C. (3.2)

Proof. By Serre Duality:

h2(S,OS(C)) = h0(S,OS(KS −C)) = 0,

since S is rational. By the Riemann-Roch theorem:

h0(S,OS(C)) ≥ 1

2
C ⋅ (C −KS) + 1 = −KS ⋅C + pa(C),

where we use the genus formula.

Proof of Lemma 3.1.17. Since S has lines, then S ≠ P1 ×P1. Let p = L1 ∩L2 be the intersection

of two lines in S. Let K2
S = d. Let C = ∣ −KS −L1 −L2∣. Observe that C is not empty, since by

Theorem 3.1.11, −KS is very ample, giving an embedding S ↪ PN in which L1, L2 are lines in
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P2. Therefore we may chooose a hyperplane section H containing L1, L2 and H = C + L1 + L2

for C ∈ C an effective divisor. For C ∼ −KS −L1 −L2, we have

C2 =K2
S − 2 degL1 − 2 degL2 +L2

1 +L2
2 + 2L1 ⋅L2 = d − 4,

KS ⋅C = −d + 2,

Hence by the genus formula

2pa(C) − 2 =KS ⋅C +C2 = −d + 2 + d − 4 = −2,

so pa(C) = 0 and we can apply Proposition 3.1.18 to obtain

h0(S,OS(C)) ≥ d − 2 ≥ 2.

Let C ∈ C be a non-singular irreducible element. Take Γ = {pi}d−3
i=1 general points in C ⊂ S. The

generality condition means that all pi lie in no line and that given a model π∶S → P2 the points

π(Γ) ∪ (
d

⋃
i=1

π(Ei))

are in general position. Let σ∶ S̃ → S be the blow-up of Γ. By our choice of Γ, the surface S̃

is a non-singular cubic del Pezzo surface. Let Fi be the exceptional divisors of Γ. The strict

transform C̃ of C satisfies

C̃ ∼ σ∗(C) −∑Fi, (C̃)2 = C2 − (d − 3) = −1.

Notice that σ is an isomorphism around p and σ−1(p) = L̃1 ∩ L̃2 ∩ C̃, where L̃i is the strict

transform of Li. Therefore σ−1(p) is an Eckardt point.

We proved Proposition 3.1.18 in an attempt to generalise the following:

Lemma 3.1.19 (see [Kol96, III, Cor. 3.2.5]). Let S be a non-singular del Pezzo surface. Then

h0(S,OS(−mKS)) =
m(m + 1)

2
(K2

S) + 1

for m ≥ 0.

Lemma 3.1.20. Let S be a non-singular del Pezzo surface and E ≅ P1 a (−1)-curve (line).

Let γ∶S → S̄ be the contraction of E. Then S̄ is a non-singular del Pezzo surface.

Proof. Since −KS is ample, for all irreducible curves C, −KS ⋅ C > 0. Let C̄ be an irreducible

curve in S̄ with multiplicity m ≥ 0 at p = γ(E) and strict transform C in S. Then

−KS̄ ⋅ C̄ = γ∗(−KS̄) ⋅ γ∗(C) = γ∗(−KS̄) ⋅C = (−KS +E) ⋅C = −KS ⋅C +m ≥ −KS ⋅C > 0.

Therefore −KS̄ is ample by Nakai-Moishezon criterion (Theorem 3.1.2).

Lemma 3.1.21. Let S ≠ P1 × P1 be a non-singular del Pezzo surface of degree 7 ≤ d ≤ 9. Then

there is a unique model π ∶ S → P2 up to isomorphism in P2.
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Proof. If S = P2 the statement is trivial. If S = F1, the blow-up of P2 at one point, S has only

one line by Lemma 3.1.13 and the statement is trivial too. If degS = 7, by Lemma 3.1.13,

there are 3 lines, namely E1,E2, L12 with intersection matrix given by E1 ⋅ L12 = E2 ⋅ L12 = 1

and E1 ⋅E2 = 0. If we contract L12 to obtain γ∶S → S̄, the images Ē1, Ē2 of E1 and E2 satisfy

Ē2
i = 0. Therefore S ≅ P1 ×P1. The only possibility to obtain a model is to contract E1 and E2

and π is unique up to an isomorphism of P2 interchanging p1 and p2.

We can classify all conics for degrees bigger than 2 with the following result.

Lemma 3.1.22. Let S be a non-singular del Pezzo surface of degree degS ≥ 3. Then any

integral curve C with (−KS ⋅C) ≤ 2 has arithmetic genus pa(C) = 0.

Proof. By Theorem 3.1.11 −KS is very ample. Therefore ∣ −KS ∣ gives an embedding φ∶S ↪ Pn

for some n ≥ 3. The curves φ(C) have degree (−KS ⋅C) in Pn, understood as the intersection

with a general hyperplane section. Therefore φ(C) can be projected isomorphically onto a

plane preserving the degree (−KS ⋅ C) = d ≤ 2. The genus formula for P2 finishes the proof:

pa(C) = (1−d)(2−d)
2

= 0.

Lemma 3.1.23. Let S be a non-singular del Pezzo surface of degree 2. Then any curve C with

(−KS ⋅C) = 1 has arithmetic genus pa(C) = 0.

Proof. By Theorem 3.1.11 −2KS is very ample. Therefore ∣−2KS ∣ gives an embedding φ∶S ↪ Pn

for some n. The curves φ(C) have degree (−2KS ⋅C) = 2 in Pn, understood as the intersection

with a general hyperplane section. Therefore φ(C) can be projected isomorphically onto a

plane preserving the degree d = (−2KS ⋅ C) = 2. The genus formula for P2 finishes the proof:

pa(C) = (1−d)(2−d)
2

= 0.

For del Pezzo surfaces of degree 2, we can characterise the lines as bitangents to the smooth

quartic curve in P2 given by Theorem 3.1.11. More precisely:

Lemma 3.1.24 (see [Dol12, Section 8.7.1]). Let S be a del Pezzo surface of degree 2 with at

worst Du Val singularities and let φ∶S → P2 be the morphism given by ∣ −KS ∣ as in Theorem

3.1.11 which realises S as a 2 ∶ 1 cover of P2 branched at a quartic curve Q of P2. Then the

lines of P2 are mapped 2 ∶ 1 to bitangent lines to Q.

3.2 The Cat Property for del Pezzo surfaces of low degree

In this section we study the Cat Property on non-singular del Pezzo surfaces. We will show

that the Cat Property holds on a non-singular del Pezzo surface S if and only if 1 ≤ degS ≤ 3.

We will classify the cats of S precisely. The proofs are valid over algebraically closed fields

in all characteristics. However in characteristic 2 the number of cats increases, although the

classification is essentially the same. For instance, when the ground field k has char(k) = 2, a

line and a conic curve in the cubic surface S3 ⊂ P3 always intersect in a tacnode. This is the

reason the classification of cats in lemmas 3.2.6 and 3.2.7 is given in terms of local intersections.

Lemma 3.2.1. Let S be a non-singular del Pezzo surface with d =K2
S ≤ 3. Then for all effective

Q-divisors D∼Q −KS the pair (S,D) is log canonical in codimension 1.
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Proof. Suppose Supp(LCS(S,D)) contains an irreducible curve C. Then by Lemma 2.3.9 (ii)

we may write D =mC +Ω with m > 1 and C /⊆ Supp(Ω). We bound deg(C) = −KS ⋅C:

K2
S = −KS ⋅D =m(−KS ⋅C) + (KS ⋅Ω) > degC ≥ 1, (3.3)

since m > 1 and −KS is ample. In particular this proves the Lemma when K2
S = 1. We will

prove cases K2
S = 2,3 using the fact that degC is a positive natural number.

Suppose K2
S = 2. Then (3.3) implies degC = 1. Lemma 3.1.23 implies pa(C) = 0. By the

genus formula C2 = −1, so C is a line. It is straight forward to see that (−KS −C)2 = −1 and

(−KS)⋅(−KS−C) = 1. Therefore pa(−KS−C) = 0. By Proposition 3.1.18, h0(S,OS(−KS−C)) ≥
1. Hence we can choose an effective curve L ∼ −KS −C. In fact, repeating the argument above

with L instead of C it follows that L is a line. Then, since L+C ∼ −KS we obtain that L ⋅C = 2.

If L and C intersect in two points, then (S,L + C) is log canonical. By Lemma 2.3.7 we

may assume L /⊂ Supp(D), which gives a contradiction: 1 = D ⋅ L ≥ 2m > 2. Hence, L and C

must intersect at one point p. Write D = mC +m′L +Ω with C,L /⊆ Supp(Ω) and m′ ≥ 0. We

may bound m′:
2 =D ⋅ (−KS) ≥m +m′ > 1 +m′,

so m′ < 1. But this gives a contradiction:

1 =D ⋅L ≥ 2m −m′ > 2 −m′ > 1,

proving the Lemma when K2
S = 2.

Suppose K2
S = 3. From (3.3) we have that 2 ≥ degC ≥ 1. By Lemma 3.1.22, pa(C) = 0.

Therefore, the genus formula tells us that if degC = 1 then C2 = −1, and if degC = 2, then

C2 = 0. We treat each case separately.

If degC = 1, then (−KS −C) ⋅(−KS) = 2 and (−KS −C)2 = 3−2 degC +C2 = 0. By the genus

formula pa(−KS −C) = 0 and Proposition 3.1.18 gives that h0(S,OS(−KS −C)) ≥ 2. Therefore

we may choose an effective divisor Q ∼ −KS −C with degQ = 2. Observe that Q ⋅C = 2. Since

∣−KS−C ∣ is at least a pencil, we may choose Q to be irreducible, since otherwise Q = L1+L2, the

union of two lines, with one of them moving free. Therefore S would have an infinite number

of lines, contradicting Lemma 3.1.13. By Lemma 3.1.5, Q is nef, and

2 = Q ⋅D =m(Q ⋅C) +Q ⋅Ω ≥ 2m > 2,

a contradiction.

Therefore degC = 2. Then (−KS −C)⋅(−KS) = 1 and (−KS −C)2 = 3−2 degC+C2 = −1. By

the genus formula pa(−KS −C) = 0 and Proposition 3.1.18 gives that h0(S,OS(−KS −C)) ≥ 1.

Therefore we may choose an effective divisor L ∼ −KS−C with degL = 1. Observe that L ⋅C = 2.

Since the degree of an effective divisor is a positive natural number, L is irreducible. We may

write D =mC +m′L +Ω with m′ ≥ 0 and C,L, /⊆ Supp(Ω). Then

3 =D ⋅ (−KS) ≥ 2m +m′ > 2 +m′,

giving m′ < 1. This implies a contradiction:

1 =D ⋅L ≥ 2m −m′ > 2 −m′ > 1,
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a contradiction, finishing the proof.

Lemma 3.2.2. Let S be a non-singular del Pezzo surface of degree 1. Then S satisfies the Cat

Property.

Proof. Let D be a tiger of S, i.e. (S,D) is not log canonical. It is enough to show that

C ⊂ Supp(D) for a cat C ∈ ∣ −KS ∣. We have that multp(D) > 1 by Lemma 2.3.9 (i). Consider

a curve C ∈ ∣ −KS ∣ through p. If C is not a cat with centre p, then by Lemma 2.3.7 we may

assume C /⊂ Supp(D), but then

1 = C ⋅D ≥ multpC ⋅multpD > 1.

If C is a cat and C /⊂ Supp(D), we also obtain a contradiction.

Lemma 3.2.3. Let S a del Pezzo surface of degree 1. The cats of S are cuspidal rational curves

C ∈ ∣ −KS ∣.

Proof. Let C ∈ ∣ −KS ∣ be a cat. Since −KS ⋅ C = 1, the curve C is irreducible. Since (S,C) is

not log canonical, then C must have a singularity at a point p, which cannot be nodal (normal

crossings). Let π ∶ S → P2 be a model of S with exceptional divisors E1, . . . ,E8. Observe that

C ⋅Ei = −KS ⋅Ei = 1 ∀i. Hence C̄ = π(C) is smooth at all pi = π(Ei). In particular p /∈ Ei and

π is an isomorphism near p. The curve C̄ is an irreducible curve of degree 3 with at least one

singular point π(p) which is not nodal. By the classification of cubic curves in P2, the point

π(p) must be a cuspidal point. In fact, π(p) is the only point at which C̄ is singular.

Remark 3.2.4. The general non-singular surface S of degree 1 has glct(S) = 1. Therefore, in

that case, S has no cats.

Lemma 3.2.5. Let S be a non-singular del Pezzo surface of degree 2. Then S satisfies the Cat

Property.

Proof. It is enough to show that if D is a tiger of S and (S,D) is not log canonical, then

T ⊂ Supp(D) for some curve T ∈ ∣ −KS ∣ such that (S,T ) is not log canonical. Suppose this is

not the case. By Lemma 3.2.1 (S,D) is not log canonical at an isolated p ∈ LCS(S,D). Consider

the linear system T ⊂ ∣ −KS ∣ given by all curves singular at p. If ∃T ∈ T , then we may assume

that T /⊂ Supp(D) either because T is a cat or by Lemma 2.3.7 (when (S,T ) is log canonical).

If T is irreducible, then T /⊂ Supp(D) and we obtain a contradiction: 2 = T ⋅D ≥ 2multpD > 2.

Hence T = L1 + L2 is the union of two lines intersecting at p, and such that L2
i = −1 and

L1 ⋅ L2 = 2. If (L1 ⋅ L2)∣p = 1 then (S,L1 + L2) is log canonical and we may assume by Lemma

2.3.7 that L1 /⊂ Supp(D). If (L1 ⋅ L2)∣p = 2, then L1 + L2 is a cat, so without loss of generality

L1 /⊂ Supp(D). We obtain a contradiction by Lemma 2.3.9 (i):

1 =D ⋅L1 ≥ multpD > 1.

Hence all T ∈ ∣ −KS ∣ with p ∈ T are smooth at p. Let π ∶ S̃ → S be the blow-up of p with

exceptional divisor E. By Lemma 2.3.5 the log pullback

(S̃, D̃ + (multpD − 1)E)
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is not log canonical at some q ∈ E. We may take a general C ∈ ∣ −KS ∣ passing through p such

that C /⊆ Supp(D) by Lemma 3.1.19. Then

multp(D) ≤D ⋅C =K2
S = 2.

The linear system L = ∣π∗(−KS) − E∣ is a pencil by Lemma 3.1.19. Take C̃ ∈ L such that

q ∈ C̃ and let C = π∗(C̃). Then p ∈ C ∈ ∣ −KS ∣ and its strict transform C̃ contains q. Then

C̃ ⋅ D̃ = C ⋅D −multpD = 2 −multpD. (3.4)

If C is irreducible, then C is a curve of genus 1 smooth at p and by Lemma 2.3.7 we may assume

that C /⊂ Supp(D). Then

C̃ ⋅ D̃ ≥ multqD̃ > 2 −multpD

by Lemma 2.3.9 (i). Together with (3.4), this gives a contradiction. Hence C is reducible and

smooth at p.

Write C = L1 + L2. We have that L1, L2 ≠ E, since otherwise C̄ = π∗(C) ∈ ∣ −KS ∣ would be

singular at p. Hence we may assume p ∈ L1, q ∈ L̃1 and p /∈ L2. The line L1 ⊂ Supp(D), since

otherwise 1 = D ⋅ L1 ≥ multpD > 1, by Lemma 2.3.9 (i). We write D = mL1 + Ω, where m > 0

and L1 /⊂ Supp(D). Since (S,L1 + L2) is log canonical, by Lemma 2.3.7, we may assume that

L2 /⊂ Supp(Ω). We observe that m ≤ 1
2
. Indeed:

1 =D ⋅L2 ≥ 2m +L2 ⋅Ω ≥ 2m.

Recall that (S̃, D̃ + (multpD − 1)E) is not log canonical at q = L̃1 ∩ E. By Lemma 2.3.9 (iii)

applied to this pair with L̃1, we obtain a contradiction:

1 < L̃1 ⋅ (Ω̃ + (multpD − 1)E)
= L1 ⋅Ω −multpΩ +m +multpΩ − 1

= L1 ⋅ (D −mL1) − 1 +m
= 2m ≤ 1.

Therefore Supp(D) must contain a cat.

Lemma 3.2.6. Let S be a non-singular del Pezzo surface of degree 2. The cats of S are cuspidal

rational curves in ∣ −KS ∣ or two lines L1 +L2 ∼ −KS intersecting at a single point.

Proof. Since Cat(S) = 1 by [Mar12], the cats of S are elements D ∈ ∣ −KS ∣ such that (S,D) is

not log canonical. In particular, D is singular and degD = 2.

If D ∈ ∣ −KS ∣ is irreducible, we may choose a model π∶S → P2 which contracts the lines

E1, . . . ,E7. Since D ⋅Ei = 1 ∀i, the image D̄ = π∗(D) ∼ −KP2 is an irreducible cubic curve in

P2, smooth at p1, . . . , p7, where pi = π(Ei). Since 1 = D ⋅Ei ≥ multEi∩DD, the morphism π is

an isomorphism around Sing(D). The pair (P2, D̄) is not log canonical and D̄ is an irreducible

cubic curve. Therefore D̄ has precisely one singularity, a cuspidal point.

If D ∈ ∣ −KS ∣ is reducible, then D = L1 +L2, the union of two lines. Observe that

L1 ⋅L2 = −KS ⋅L1 −L2
1 = 2.
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The lines L1 and L2 must intersect at precisely one point, since otherwise L1 +L2 would have

simple normal crossings and (S,L1 +L2) would be log canonical.

Lemma 3.2.7. Let S ⊂ P3 be a non-singular del Pezzo surface of degree 3 embedded by ∣ −KS ∣.
Consider elements in ∣ −KS ∣ corresponding to hyperplane sections. Given any point p ∈ S, let

T ∈ ∣−KS ∣ be the unique section which is singular at p, corresponding to the tangent hyperplane

section. We can classify each point p ∈ S according to the singularities of T :

(IA) The curve T is irreducible, rational, and has a nodal singularity at p.

(IB) The curve T is irreducible, rational, and has a cuspidal singularity at p.

(IIA) The curve T is reducible, T = L + C, the union of a line L and a conic C, intersecting

with simple normal crossings, one of them at p.

(IIB) The curve T is reducible, T = L + C, the union of a line L and a conic C, intersecting

only at p with a tacnodal singularity.

(IIIA) The curve T is reducible, T = L1+L2+L3, the union of three lines intersecting with simple

normal crossings, where L1 ∩L2 = {p} and p /∈ L3.

(IIIB) The curve T is reducible, T = L1 +L2 +L3, the union of three lines intersecting only at p.

We say that p is an Eckardt point.

In the above cases, the pair (S,T ) is log canonical for (IA), (IIA) and (IIIA) but not for the

rest.

Note that a general cubic surface does not have Eckardt points.

Proof. Since T corresponds to a tangent hyperplane section of S ⊂ P3, a non-singular surface

of degree 3, the section T corresponds to a reduced cubic curve in a hyperplane H of P3, i.e.

H ≅ P2. Therefore T is a reduced singular plane cubic curve. If T is irreducible, it must have

precisely one singularity, which must be nodal or cuspidal, corresponding to cases (IA) and

(IB). Note that nodal singularities are log canonical, but if T has a cuspidal singularity, then

lct(P2, T ) = 5
6

by Example 2.1.13.

If T is reducible, since T is a plane cubic curve, it can only split as a conic and a line or 3

lines. The Lemma follows.

Numerically subcases A and B in each case of Lemma 3.2.7 are the same, i.e. the intersection

matrix is the same. The only difference is in the singularity type at p. For this reason sometimes

we will omit the letter when it makes essentially no difference.

We will need an auxiliary Lemma on del Pezzo surfaces of degree 2 with very mild singu-

larities before we can prove that the Cat Property is satisfied on smooth cubic surfaces.

Lemma 3.2.8. Let S be a non-singular del Pezzo surface of degree 2 with at most two A1

points and let φ∶S → P2 be the generically finite 2∶1 morphism branched at a quartic curve Q

of P2 given by ∣ −KS ∣ as stated in Theorem 3.1.11.

Let D∼Q −KS be an effective Q-divisor which is log canonical in codimension 1. The pair

(S,D) is log canonical ∀p ∈ S such that φ(p) /∈ Q.

The above Lemma gives some strong indication that del Pezzo surfaces with one or two A1

points should satisfy the Cat Property. Since we did not need such a strong result we decided

to restrict to the above statement.
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Proof of Lemma 3.2.8. Suppose for contradiction that (S,D) is not log canonical at some

p ∈ Supp(D) such that φ(p) /∈ Q. In particular S is smooth at p. Indeed, by [DV34a], [DV34b],

[DV34c] or the more recent [Dol12, Section 8.7.1], the singularities of S are mapped to singu-

larities of the curve Q. Moreover S is smooth if and only if Q is smooth, S has one (two) A1

points if and only if Q has one (two) nodal singularities.

Curves Lλ ∈ ∣ −KS ∣ containing p are precisely the preimages by φ of lines L̄λ containing

φ(p). It follows that {Lλ} is a pencil. Since φ(p) /∈ Q, then all Lλ are smooth at p. Take Lλ

general, then Lλ /⊂ Supp(D). Therefore

multpD ≤D ⋅Lλ = 2. (3.5)

Let σ∶ S̃ → S be the blow-up of p with exceptional curve E ≅ P1, E2 = −1 since S is smooth at

p. Let Z̃ be the strict transform in S̃ of any Q-divisor Z in S. By Lemma 2.3.5, the pair

(S̃, D̃ + (multpD − 1)E)

is not log canonical at some q ∈ E but it is log canonical near q by (3.5). By Lemma 2.3.9 (i)

applied to this pair, we obtain

multpD +multqD̃ > 2. (3.6)

Let L ∈ {Lλ} be the unique element such that q ∈ L̃. By Lemma 2.3.7, we may assume that

L /⊆ Supp(D), since (S,L) is smooth at p. If L is irreducible, then

2 −multpD = L̃ ⋅ D̃ ≥ multqD̃,

contradicting (3.6).

Therefore L = L1 + L2 the union of two lines with p ∈ L1 and q ∈ L̃1 but p /∈ L2 since L is

smooth at p. Moreover L1 ⋅ L2 = (2 − x
2
) where 0 ≤ x ≤ 2 is the number of A1 points in S that

lie in L1 ∪ L2. By Lemma 2.3.7, we may assume that either L1 /⊂ Supp(D) or L2 /⊂ Supp(D).
However L1 ⊂ Supp(D) since otherwise

1 = L1 ⋅D ≥ multpD > 1,

by Lemma 2.3.9 (i). Therefore we may write D = aL1 +Ω with L1, L2 /⊂ Supp(Ω) and a > 0. On

one hand

1 = L2 ⋅D = (2 − x
2
)a +L2 ⋅Ω ≥ (2 − x

2
)a. (3.7)

On the other hand, since (S̃, aL̃1 + Ω̃ + (multpD − 1)E) is not log canonical at q /∈ E, then

1 < L̃1 ⋅ (Ω̃ + (multpD − 1)E)
= L1 ⋅Ω −multpΩ + a +multpΩ − 1

= L1 ⋅ (D − aL1) + a − 1

= (1 −L2
1)a

= (2 − 1

2
x)a,

which contradicts (3.7).
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Theorem 3.2.9. Let S a non-singular del Pezzo surface of degree 3. Then S satisfies the Cat

Property. In particular, the cats of S are the tangent hyperplane sections from Lemma 3.2.7 in

cases (IB), (IIB) and (IIIB).

Proof. Suppose (S,D) is not log canonical, where D is a tiger. By Lemma 3.2.1 the locus of log

canonical singularities LCS(S,D) consists of isolated points. Let p ∈ S be one of those points.

Let T ∈ ∣ −KS ∣ be the tangent hyperplane section at p, classified depending on p as in Lemma

3.2.7. Note that multp(T ) = 2 for all cases apart from (IIIB) where multpT = 3. We need to

prove that in cases (IB), (IIB) and (IIIB) we have T ⊆ Supp(D), i.e. exactly when (S,T ) is

not log canonical, and therefore, post factum, T is a cat. Furthermore, we need to prove that

in cases (IA), (IIA) and (IIIA), the pair (S,D) is in fact log canonical, i.e. we must achieve a

contradiction. Note that, by Lemma 3.2.7 we may assume that T ≠D.

First of all notice that if L is a line with p ∈ L, then L ⊂ Supp(D), since otherwise

1 = L ⋅D ≥ multpD > 1, (3.8)

by Lemma 2.3.9 (i), which is absurd. In particular when p is of type (IIIB) this finishes the

proof, since all components of T are in Supp(D).
Let σ ∶ S̃ → S be the blow-up at p with exceptional divisor E. Denote by Q̃ = (σ−1)∗(Q),

the strict transform of any Q-divisor Q in S. The strict transform T̃ of T contains exactly

one irreducible smooth rational component F̃ such that (F̃ )2 = −1. Indeed, in case (I) we have

F = T , since T is irreducible. In case (II) we have F = C. Finally, in case (IIIA) we have F = L3.

Note that in all three cases (F̃ )2 = −1 and its genus is g(F̃ ) = 0. Therefore F is contractible.

In general terms S̃ is a weak del Pezzo surface, i.e. for all irreducible curves Q ⊂ S̃ we have

−KS̃ ⋅Q ≥ 0. In fact S̃ is a del Pezzo surface of degree 2 in case (I). In case (II) −KS̃ ⋅Q = 0

if and only Q = L̃, and in case (III) we have −KS̃ ⋅Q = 0 if and only if Q = L̃1, L̃2. Note that

in (II) and (III) (Q̃)2 = −2, i.e. the only curves in which −KS̃ fails to be ample are the strict

transforms of lines passing through p.

Let σ̄ ∶ S̃ → S̄ be the contraction of F . The surface S̄ is smooth since F is a rational (−1)-
curve. For any Q-divisor B̃ in S̃, denote by B̄ ∶= σ̄∗(B̃). Let Ē ∶= σ̄∗(E) and p̄ ∶= σ̄(F ). The

class −KS̄ is ample, since the only (−2)-curves Q described above, intersect F with Q ⋅ F = 1

and therefore σ̄∗(Q) are rational (−1)-curves. Also K2
S̄
= 3, so S̄ is a non-singular del Pezzo

surface of degree 3. In fact, S is abstractly isomorphic to S̄ and the composition

σ̄ ○ σ−1 ∶ S 999K S̄ ≅ S

is known as the Geiser involution, since σ2 = IdS . The Geiser involution is described in detail

using this language in [CPR00, Section 2.6]. Roughly speaking we have substituted the curve

F with Ē. In particular, T ′ ∶= σ̄∗((σ−1)∗(T )) + Ē ∼ −KS̄ has p̄ = σ̄(F ) the same singularity

type as p, in the sense of Lemma 3.2.7.

We will consider the log pullback of D under σ and σ̄. By Lemma 2.3.5, the pairs

(S̃, D̃ + (multpD − 1)E) and (S̄, D̄ + (multpD − 1)Ē)

are not log canonical at some point q ∈ E, and q̄ = σ̄(q) ∈ Ē = σ̄∗(E), respectively. Note that

D̃ + (multpD − 1)E∼Q −KS̃ and D′ ∶= D̄ + (multpD − 1)Ē∼Q −KS̄ .
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Since (S,D) is not log canonical at p, then multpD − 1 > 0, by Lemma 2.3.9 (i). Hence D′ is

effective and has non-zero coefficient for Ē. On the other hand, by Lemma 3.2.1 we have that

1 ≥ multpD − 1. Therefore

LCS(S̃, D̃ + (multpD − 1)E) and LCS(S̄, D̄ + (multpD − 1)Ē)

consists of isolated points, q and q̄, respectively.

We will show that q ∈ T̃ ∩E. Recall that D̃ + (multpD − 1)E∼Q −KS̃ . Suppose q /∈ T̃ ∩E.

We will show that

(S̃, D̃ + (multpD − 1)E)

is log canonical at q /∈ E. Let γ∶ S̃ → Ŝ be the contraction of all (−2)-curves in S̃. We distinguish

the following cases:

(I) Since p /∈ L for any line L ⊂ S, the surface S̃ is a del Pezzo surface. Therefore −KS̃ is

ample and γ is the identity.

(II) Recall p ∈ L ⊂ T . Therefore L̃2 = −2, −KS̃ ⋅ L̃ = 0 and γ contracts L̃ to a point r1, which

is a singularity of type A1 is Ŝ.

(III) Recall p = L1 ∩L2, T = L1 +L2 +L3. Therefore L̃2
1 = L2

2 = −2, −KS̃ ⋅ L̃1 = −KS̃ ⋅ L̃1 = 0 and

γ contracts L̃1, L̃2 to points r1, r2, respectively which are du Val singularities of type A1

in Ŝ.

The surface Ŝ is a del Pezzo surface of degree 2 with at most 2 points of type A1. By Theorem

3.1.11, there is a generically finite 2 ∶ 1 morphism φ∶ Ŝ → P2 branched at a quartic curve Q ⊂ P2.

The morphism φ is given by ∣ −KŜ ∣. For any Q-divisor Z of S̃, denote by Ẑ = γ∗(Z). Since

q /∈ T̃ , the morphism γ is an isomorphism near q. Therefore the pair

(Ŝ, D̂ + (multpD − 1)Ê)

is log canonical at q̂ = γ(q) if and only if (Ŝ, D̂ + (multpD − 1)Ê) is log canonical at q. Observe

that

D̂ + (multpD − 1)Ê = σ∗(D̃ + (multpD − 1)E)∼Qσ∗(−KS̃) = −KŜ .

We distinguish the three cases:

(I) The divisor

T̂ + Ê = γ∗(T̃ +E) ∼ γ∗(−KS̃) ∼ −KŜ .

Therefore φ(T̂ ) = φ(Ê) = H, a line in P2. Since T̂ ⋅ (−KŜ) = Ê ⋅ (−KŜ) = 1, by Lemma

3.1.24, H is bitangent to Q at points φ(r) where r ∈ Ê ∩ T̂ . Since q /∈ T̃ , then q̂ /∈ T̂ and

by Lemma 3.2.8 (Ŝ, D̂ + (multpD − 1)Ê) is log canonical at q̂.

(II) The divisor

Ĉ + Ê = γ∗(C̃ + L̃ +E) ∼ γ∗(−KS̃) ∼ −KŜ .

Therefore φ(Ĉ) = φ(Ê) = H, a line in P2. Since Ĉ ⋅ (−KŜ) = Ê ⋅ (−KŜ) = 1, by Lemma

3.1.24, H is bitangent to Q at points φ(r) where r ∈ Ê ∩ Ĉ. Since q /∈ C̃ ∪ L̃, then q̂ /∈ Ĉ
and by Lemma 3.2.8 (Ŝ, D̂ + (multpD − 1)Ê) is log canonical at q̂.
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(III) The divisor

L̂3 + Ê = γ∗(L̃1 + L̃2 + L̃3 +E) ∼ γ∗(−KS̃) ∼ −KŜ .

Therefore φ(L̂3) = φ(Ê) = H, a line in P2. Since L̂3 ⋅ (−KŜ) = Ê ⋅ (−KŜ) = 1, by Lemma

3.1.24, H is bitangent to Q at points φ(r) where r ∈ Ê ∩ L̂3. Since q /∈ L̃1 ∪ L̃2 ∪ L̃3, then

q̂ /∈ L̂3 and by Lemma 3.2.8 (Ŝ, D̂ + (multpD − 1)Ê) is log canonical at q̂.

Since γ is an isomorphism near q, the pair (S̃, D̃+(multpD−1)E) is an isomorphism away from

T̃ ∩E. Therefore we may assume q ∈ T̃ ∩E.

If p is of type (I), then T ⊆ Supp(D) since otherwise we obtain a contradiction, using

multpD > 1 and Lemma 2.3.9 (i) applied to the pair (S̃, D̃ + (multpD − 1)E):

2 −multpD < multqD̃ ≤ T̃ ⋅ D̃ = T ⋅D − 2multpD = 3 − 2multpD ≤ 2 −multpD.

Similarly, if p is of type (II), then C ⊆ Supp(D), since otherwise

2 −multpD < multqD̃ ≤ C̃ ⋅ D̃ = C ⋅D −multpD = 2 −multpD,

again by means of Lemma 2.3.9 (i). In particular these two absurdities imply that p is not of

types (IA), (IB), (IIA) or (IIB), since in these cases we just proved T ⊆ Supp(D). Hence, let

us assume that p is of type (IIIA). We write

D = c1L1 + c2L2 + c3L3 +Ω where L1, L2, L3 /⊆ Supp(Ω), c1, c2 > 0 and c3 ≥ 0,

where c1, c2 > 0 because of (3.8). Write Ω = ∑aiΩi where ai > 0 for all i. Let m ∶= multpΩ.

We may assume that b1 ≥ b2 and c1 ≥ c2 ≥ c3. Indeed, if this was not the case we may

subtract one component of T from D by convexity (Lemma 2.3.7).

The pushforward via σ̄ of the log pullback via σ of the above divisors in S̄ corresponds to:

(S̄,D′ ∶= c1L̄1 + c2L̄2 + (c1 + c2 +m − 1)Ē + Ω̄),

where Ē, L̄i /⊆ Supp(Ω̄) and deg(Ē) = deg(L̄i) = 1. This pair is not log canonical. Write

Ω̄ = ∑aiΩ̄i. Note that the coefficients ai for Ω̄i = σ̄∗ ○ σ−1
∗ (Ωi) in Ω̄ are the same as for Ωi

in Ω. Furthermore, note that we are in in the same situation as before we applied the Geiser

Transform, i.e. we have a tiger not log canonical at a point p of type (IIIA). Therefore, we may

substitute S for S̄, p for q̄, D for D′, Ω for Ω̄ L1 for L̄1, L2 for L̄2 and L3 for Ē. We could

apply again the Geiser involution, repeating the process ad infinitum in an inductive fashion.

The only assumption we had made is that (S,D) is not log canonical at p. We obtain as a

result that (S̄,D′) is not log canonical at q̄. We claim the following:

Claim 3.2.10. For Ω a Q-divisor in S and Ω̄ a Q-divisor in S̄ as above

deg Ω > deg Ω̄

holds.

Observe that, as we already mentioned, deg Ω = ∑ai deg Ωi and deg Ω̄ = ∑ai deg Ω̄i share the

same coefficients. On the other hand, by construction, no curve in Supp(Ω) is contracted when

applying the Geiser involution. Also, since −KS and −KS̄ are ample, deg Ωi,deg Ω̄i ∈ N>0. If we
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consider the set ⋃{∑ai deg Ωi} indexed after applying the Geiser transform a countable number

of times, we notice that it satisfies the Descending Chain Condition. But this contradicts the

claim, finishing the proof.

The use of Claim (3.2.10) is a key step to the proof of the Theorem and it was suggested to

the author by I. Cheltsov.

Proof of Claim 3.2.10. We will prove deg Ω−deg Ω̄ > 0. Note that degD = degD′ =K2
S = 3 and

let m ∶= multpΩ. We have multpD = c1 + c2 +m and then

deg Ω − deg Ω̄ = −(c1 + c2 + c3) + (c1 + c2 + (c1 + c2 +m − 1)) = c1 + c2 +m − 1 − c3 (3.9)

However, since (S,L1 + L2 + L3) is log canonical, then L1 + L2 + L3 ≠ D and by Lemma 2.3.7,

applied to (S,D) and L1 +L2 +L3 we obtain that the pair

(S, 1

1 − c3
(D − c3 (L1 +L2 +L3))) = (S, 1

1 − c3
((c1 − c3)L1 + (c2 − c3)L2 +Ω))

is not log canonical where we use the fact that c1 ≥ c2 ≥ c3. Hence using Lemma 2.3.9 (i) we

have

c1 − c3 + c2 − c3 +m = (c1 − c3)multpL1 + (c2 − c3)multpL2 +multpΩ > 1 − c3,

so c1 + c2 +m − 1 − c3 > 0 and from (3.9) the claim is proven.

Using Observation 2.2.11 and the previous results in this section, we can conclude:

Corollary 3.2.11. Let S be a non-singular del Pezzo surface with K2
S ≤ 3. Then

ω = glct(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 when K2
S = 1 and ∣ −KS ∣ has no cuspidal curves

5

6
when K2

S = 1 and ∣ −KS ∣ has a cuspidal curve

5

6
when K2

S = 2 and ∣ −KS ∣ has no tacnodal curves

3

4
when K2

S = 2 and ∣ −KS ∣ has a tacnodal curve

3

4
when K2

S = 3 and ∀C ∈ ∣ −KS ∣, C has no Eckardt points

2

3
when K2

S = 3 and ∃C ∈ ∣ −KS ∣ with an Eckardt point.

This result can be found in [Che08] when the ground field is k = C and for algebraically

closed fields in [Mar12]. The proof of Lemma 3.2.5 is a generalisation of the computation of

glct(S) when S is a del Pezzo surface of degree 2 in [Mar12].

Not all del Pezzo surfaces satisfy the Cat Property. We have seen counter-examples for

P2 (Example 2.2.8) and F1 (Example 2.2.9). However, a better counter-example which gives

evidence for Conjecture 2.2.10 is available for degrees 4–9:

Example 3.2.12. Let S be a non-singular del Pezzo surface of degree 4 ≤ degS ≤ 9. We will

construct an effective Q-divisor D∼Q −KS such that mD ∈ ∣ −mKS ∣ only for m > Cat(S) = 1

and (S,D) is not log canonical. In particular, the Cat Property does not hold for S.

If S = P1 × P1, let F1, F2, be two general fibres of each of the projections S → P1. Observe

that for any C ∼ −KS−F1−F2, we have C2 = 2 and degC = 4, so by the genus formula pa(C) = 0.
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Applying Proposition 3.1.18 we have that h0(S,OS(−KS − F1 − F2)) ≥ 4, so we may assume C

to be effective, F1, F2 /⊂ C. Let

D ∶= 3

2
C + 1

2
(F1 + F2)∼Q −KS .

Suppose S ≠ P1 × P1. Let π∶S → P2 be a model of S with exceptional divisors E1, . . . ,En

where n = 9 − degS, 0 ≤ n ≤ 5. Let pi = π(Ei). Let C̄ ∼ π∗(OP2(2)) be a smooth conic in P2

passing through the points p1, . . . , pn. This curve exists since h0(P2, π∗(OP2(2))) = (4
2
) = 6 > 5.

Let C be the strict transform of C̄ in S. Then C ∼ π∗(OP2(2)) −∑ni=1Ei. Let

D ∶= 3

2
C + 1

2

n

∑
i=1

Ei∼Q −KS .

In both cases, (S,D) is clearly not log canonical, since lct(S,D) ≤ 2
3
. Moreover D /∈ ∣ −KS ∣

but 2D ∈ ∣ − 2KS ∣.
Finally, observe that (S,D) is not log canonical in codimension 1. This condition coincides

with the absence of the Cat Property and together with the previous results, it is the evidence

behind Conjecture 2.2.10.

Observe that this situation is not possible when degS = 3, since there is no conic passing

through 6 points in general position.

However the Cat Property is satisfied locally when degS = 4:

Lemma 3.2.13. Let S be a non-singular del Pezzo surface of degree 4 over an algebraically

closed field k. The surface S satisfies the Cat Property for all p ∈ S such that p lies in no line.

Lemma 3.2.14. Let S be a non-singular del Pezzo surface of degree 3 and p ∈ S, such that it

does not lie in a line. The cats of S at p are cuspidal rational curves in ∣ −KS ∣ and curves of

the form

A +B

two conics such that A +B ∼ −KS and (A ⋅B)∣p = 2.

We provide a joint proof of lemmas 3.2.13 and 3.2.14.

Proof of lemmas 3.2.13 and 3.2.14. Suppose (S,D) is not log canonical at p ∈ S, where p is a

point which is not contained in any line. Let σ∶ S̃ → S be the blow-up of p with exceptional

divisor E. The surface S̃ is a non-singular del Pezzo surface of degree 3 and the curve E is a

line in S̃. By Theorem 3.2.9, the surface S̃ satisfies the Cat Property. Denote by B̃ the strict

transform in S̃ of any Q-divisor B in S. By Lemma 2.3.5, the pair

(S̃, D̃ + (multpD − 1)E) (3.10)

is not log canonical at some q ∈ E. By Lemma 3.2.1, the pair (3.10) is log canonical in

codimension 1. Since

KS̃ + D̃ + (multpD − 1)E∼Qσ∗(D +KS)∼Q0

we deduce that D̃ + (multpD − 1)E∼Q −KS̃ . Therefore, by the Cat Property on S̃, ∃T ∈ ∣ −KS̃ ∣
such that (S̃, T ) is not log canonical and T ⊆ Supp(D̃+(multpD−1)E). By Lemma 3.2.7, since

q ∈ E, either:
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(i) The curve T = E + C̃ where C̃ is a conic such that C̃ ∩E = {q}.

(ii) The point q is an Eckardt point of S̃ and T = L̃1 + L̃2 +E where L̃1 and L̃2 are lines such

that L̃1 ∩ L̃2 ∩E = q.

In case (i), let

C = σ∗(C̃) ∼ σ∗(C̃ +E) ∼ σ∗(−KS̃) ∼ −KS .

Since multpC = C̃ ⋅E = 2 and C̃ ∩E = q, then C is a cuspidal rational curve.

If T = L̃1 + L̃2 + E (case (ii)), let A = σ∗(L̃1) and B = σ∗(L̃2). The curves A and B are

conics in S. Then

A +B = σ∗(L̃1 + L̃2) ∼ σ∗(L̃1 + L̃2 +E) ∼ σ∗(−KS̃) ∼ −KS .

Moreover A ∩B = p and since A +B ∼ −KS , then A ⋅B = 2.

Lemmas 3.2.1, 3.2.2, 3.2.5, Theorem 3.2.9 and Example 3.2.12 can be summarised in the

following elegant statement, which proves Conjecture 2.2.10 for non-singular surfaces.

Corollary 3.2.15. Let S be a non-singular del Pezzo surface. Then S satisfies the Cat property

if and only if all effective Q-divisors D with D∼Q −KS are log canonical in codimension 1.

3.3 Del Pezzo surface of degree 4. Curves of low degree

and log canonical pairs

As we mentioned before, the proof of Theorem 1.2.5 for smooth complex del Pezzo surfaces

does not extend to surfaces over algebraically closed fields when 2 ≤ degS ≤ 4. Corollary 3.2.11

deals with the cases 1 ≤ degS ≤ 3. In this section we prove the case degS = 4. To do this, we

first classify low degree curves on S. Then, we construct effective anticanonical Q-divisors with

certain good properties. These Q-divisor are used to provide a proof of the Theorem in Section

3.3.3.

3.3.1 Curves of low degree and models of S

Let π∶S → P2 be the blow-up at points p1, . . . , p5 ∈ P2 in general position. Let E1, . . . ,E5 be

the exceptional divisors. Recall −KS ∼ π∗(OP2(3)) −∑5
i=1Ei and E2

i = −1.

Observe Table 3.3. In the first column we have defined certain complete linear systems LS
in S. Let C ∼ LS be any divisor. Its numerical properties (C2,deg(C)) are the same for any

divisor in a given LS and are easy to compute. We list them in the second and third columns

of table 3.3. Note that, by the genus formula, pa(C) = 0 in all cases. If degC = 1, then by

Proposition 3.1.18, h0(LS) ≥ 1. As we saw in Lemma 3.1.13 there is only a finite number of

lines in a del Pezzo surface, so h0(LS) = 1 and we can find a unique curve C ′ ∈ LS. The

notation for each particular C ′ is in the last column of the table.

If degC = 2, then by Proposition 3.1.18, h0(LS) ≥ 2. Take LS ′ ⊂ LS to be the sublinear

system fixing p. Then h0(LS ′) ≥ 1 and we can find a curve C ′ ∈ LS with p ∈ C ′. The notation

for each particular C ′ is in the last column of the table.

When the curve C ′ is irreducible, we can realise it as the strict transform of an irreducible

curve in P2 via the model π. For instance Lij is the strict transform of the unique line through
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Linear system LS degC C2 Fix p Fix q C ′

∣Ei∣ 1 −1 N N Ei
Lij = ∣π∗(OP2(1)) −Ei −Ej ∣ 1 −1 N N Lij

C0 = ∣π∗(OP2(2)) −
5

∑
i=1

Ei∣ 1 −1 N N C0

Bi = ∣π∗(OP2(1)) −Ei∣ 2 0 Y N Bi

Ai =

RRRRRRRRRRRRRRRR

π∗(OP2(2)) −
5

∑
j=1
j≠i

Ej

RRRRRRRRRRRRRRRR

2 0 Y N Ai

Qi =
RRRRRRRRRRR
π∗(OP2(3)) −Ei −

5

∑
j=1

Ej

RRRRRRRRRRR
3 1 Y Y Qi

R = ∣π∗(OP2(1))∣ 3 1 Y Y R
Rijk = ∣π∗(OP2(2)) −Ei −Ej −Ek ∣ 3 1 Y Y Rijk

Table 3.3: Catalogue of curves of low degree in S.

pi and pj . C0 is the strict transform of the unique conic through all pi. Bi is the strict transform

of a line passing through pi and Ai is the strict transform of a conic through all pj but pi. The

last three rows of Table 3.3 deal with cubics and they are treated in Lemma 3.3.7.

In order to understand the geometry of S we need to understand which are its curves of low

degree and how they intersect each other. We have just constructed some of these curves in

Table 3.3. In this section, among other properties of the low degree curves constructed above,

we will show that the lines in Table 3.3 are all the lines in S. Furthermore, we will show that

the conics in Table 3.3 are all the conics in S passing through a given point p. Finally, there

is more than one model S → P2 that characterises S as a blow-up of the plane in 5 points. We

will also show how we can choose a model adequate to our needs.

Lemma 3.3.1. Let S be a non-singular del Pezzo surface of degree 4 and C ′ a curve as in

Table 3.3. Suppose C ′ is irreducible. Then C ′ is non-singular.

Proof. Suppose C ′ ≠ Qi. Then, π(C ′) is an irreducible curve of degree 1 or 2 in P2. Therefore

π(C ′) is smooth. Since S is just the blow-up of smooth points of P2, if π(C ′) is a smooth curve

of P2, then its strict transform C ′ is a smooth curve in S.

The irreducible curve π(Qi) is an irreducible cubic curve in P2 with multiplicity 2 at pi. Its

strict transform Qi in S must be smooth, since it is enough to blow-up S at pi once to resolve

π(Qi).

Lemma 3.3.2. The 16 lines in Table 3.3 are all the lines in S. The intersection of these lines

are:

Ei ⋅Ej = −δij , Lij ⋅Ei = Lij ⋅Ej = 1, C0 ⋅Ei = 1, C2
0 = −1,

C0 ⋅Lij = 0, Lij ⋅Lkl =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 if i = k and j = l,
0 if only two subindices are equal,

1 if none of the subindices are equal.

Proof. See Lemma 3.1.13 where C0 = C12345.

Lemma 3.3.3. Given a line L ⊂ S, we can choose a model γ∶S → P2 such that L = E1. If

p = L1 ∩L2, the intersection of two lines, we can choose γ such that L1 = E1, L2 = L12.
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Proof. We construct γ∶S → P2 by contracting 5 disjoint exceptional curves Fi (i.e. Fi ⋅Fj = 0 if

i ≠ j). Let F1 = L.

(i) If F1 = E1, take F2 = E2, F3 = L34, F4 = L35, F5 = L45.

(ii) If F1 = C0, take Fj = L1j .

(iii) If F1 = L12, take Fi = L1 (i+1) for 2 ≤ i ≤ 4, F5 = C0.

Obvious relabelling exhausts all possibilities for L among the 16 lines in Lemma 3.3.2. By

Castelnuovo contractibility criterion [Har77, V.5.7] we can contract each Fi, leaving every other

point intact. The image of γ is P2, because the relative minimal model of S once 5 exceptional

curves are contracted is unique. For the second part we can assume already L1 = E1 and run

this lemma again. In that case we are in case (i) above and we are done.

In a similar fashion to Lemma 3.3.2 we can show:

Lemma 3.3.4. If C is an irreducible conic in S passing through p, then C = Ai or C = Bi, with

π(C) either a conic through all marked points but pi or a line through p and pi, respectively.

Proof. By Lemma 3.1.22, C has arithmetic genus pa(C) = 0. By the genus formula, this implies

C2 = 0. Let C̄ = π∗(C) ⊂ P2, C̄ ∼ OP2(d) for some d ≥ 1. Hence C ∼ π∗(OP2(d)) − ∑aiEi for

ai ≥ 0. This gives

0 = C2 = d2 −∑a2
i , 2 = (−KS) ⋅C = 3d −∑ai.

given that ai are non-negative integers ∑a2
i ≥ ∑ai. Hence

0 = d2 −∑a2
i ≤ d2 −∑ai = d2 − 3d + 2 = (d − 1)(d − 2),

so d = 1 or d = 2. The only possibilities for ai for the second equation in (3.3.1) to hold are

∑ai = 2 when d = 1 and ∑ai = 4,5, when d = 2. All these possibilities are classified in Table

3.3.

Lemma 3.3.5. Given C an irreducible conic in S, p ∈ C, we can choose a model γ∶S → P2

such that under that model the curve C can be realised as C = Ai for any i in Table 3.3, unless

p ∈ E1 in which case i ≠ 1.

Proof. If p ∈ L, a line in S, assume L = E1 by Lemma 3.3.3. We have C ≠ A1 since otherwise

0 = A1 ⋅E1 = C ⋅E1 ≥ multp(C) ⋅multp(E1) = 1,

a contradiction.

If C = B1, take Fi and γ ∶ S → P2 as in the proof of Lemma 3.3.3, case (i). Because C is

irreducible, C = γ(B1) = OP2(d) by the genus formula on P2. Moreover:

B1 ∼ γ∗(OP2(d)) −
5

∑
i=1

(Fi ⋅B1)Fi = γ∗(OP2(d)) − F1 − F3 − F4 − F5,

and 2 = B1 ⋅ (−KS) = 3d − 4, so d = 2. Therefore under the new blow-up C is A2. By obvious

relabelling of the Fj we can consider C = Ai with i ≠ 1.

If C = Bi, with i ≠ 1, then p /∈ E1 since C is irreducible. If C = B2, the same choice of Fi

gives us C = A1 under the new blow-up. If C = Bi for i = 3,4,5 take F1 = E1, F2 = Ei, F3 =
Ljk, F4 = Ljl, F5 = Lkl for different j, k, l ∈ {1, . . . ,5} ∖ {i} and C = Ai under γ.
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Lemma 3.3.6. Let p ∈ L, where L is a line, and let C1,C2 be distinct irreducible conics passing

through p. Then C1 and C2 intersect normally at p.

Proof. By Lemma 3.3.5 we may assume that E = L1 and C1 = Ai for some 2 ≤ i ≤ 5. Without

loss of generality we may assume that C1 = A2. Note that C2 ≠ A1,Bj , for j > 1 since

E1 ⋅A1 = E1 ⋅Bi = 0 and C2 being irreducible would give a contradiction:

0 = E1 ⋅C2 ≥ multpE1 ⋅multpC2 ≥ 1.

By Lemma 3.3.4 we have that C2 = B1 or C2 = Ai for i ≠ 1,2. In both cases C2 ⋅A2 = 1, obtaining

simple normal crossings at p:

1 = C2 ⋅A2 ≥ (C2 ⋅A2)∣p.

Lemma 3.3.7. Let LS be a complete linear system of degree 3 as in the last three rows of Table

3.3. Let π∶ S̃ → S be the blow-up of some point p ∈ S with exceptional curve E ⊂ S̃. Let q ∈ E.

Then ∃ C ′ ∈ LS, a curve with p ∈ C ′ satisfying one of the following:

(i) C ′ is smooth at p and its strict transform C̃ ′ ∼ σ∗(C) −E passes through q.

(ii) C ′ is reducible and two of its components intersect at p. One of this components is a line

L. By Lemma 3.3.3 we choose a model π∶S → P2 such that L = E1. Then either:

(a) C ′ = E1 +C for C an irreducible conic in Table 3.3 passing through p.

(b) C ′ = E1 +L12 +L for L a line not passing through p.

Case (ii)(a) is possible only if LS = Rijk for (i, j, k) ∈ {(2,3,4), (2,4,5), (3,4,5)} or LS = R.

Case (ii)(b) is possible only if LS = R,Q2,R2jk,R12k.

In case (ii) (a) we can find C:

• If LS = R, then C = B1.

• If LS = R234, then C = A5.

• If LS = R245, then C = A3.

• If LS = R345, then C = A2.

In case (ii) (b) we can find L:

• If LS = R, then L = E2.

• If LS = Q2, then L = C0.

• If LS = R2jk, then L = Ljk.

• If LS = R12k, then L = L1k.

In each case, denote C ′ by the letter in the last column of Table 3.3. Note that in case (i),

C ′ may still be reducible, but it is irreducible around p.
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Proof. Let LS ′ = {D ∈ LS ∶ p ∈ Supp(D)} and let L̃S ′ = ∣σ∗(LS ′) −E∣. By Proposition 3.1.18

h0(L̃S ′) = h0(LS ′) = h0(LS) − 1 ≥ 2,

so we can choose B ∈ L̃S ′ an effective divisor passing through q. If E /⊂ Supp(B), then let

C ′ = σ∗(B) and B = C̃ ′ ∼ σ∗(C ′) −E where B ⋅E = 1. Clearly, this is case (i) in the statement.

Conversely, if E ⊂ Supp(B), let B = A+ bE where E /⊂ Supp(A), b ≥ 1 is an integer and A is

effective. Then C̃ ′ = A = B − bE ∼ σ∗(C ′) − (b + 1)E for C ′ = σ∗(B) = σ∗(A) and C ′ is singular

at p. C ′ is reducible, since otherwise pa(C̃ ′) < pa(C ′) = 0, which is impossible. Note that if C ′

is reducible, then C ′ = L+F for L a line and F a possibly reducible conic. By Lemma 3.3.3 we

may choose a model such that L = E1. This is case (ii) in the statement which can only split

in subcases (a) and (b).

In case (b) we can assume the second line is L12 by Lemma 3.3.3.

We prove (a). If C ′ ∈ R, then C ∼ π∗(OP2(1)) − E1 = B1. If RS = Rijk, then C ∼
π∗(OP2(2))−Ei −Ej −Ek −E1 which is not an irreducible conic in Lemma 3.3.4 unless it is one

of the cases in the statement.

We prove (b). If LS = R, then L ∼ π∗(OP2(1)) −E1 −L12 = E2. If LS = Qi, then

L ∼ π∗(OP2(3)) −Ei −
5

∑
j=1

Ej −E1 −L12 ∼ π∗(OP2(2)) +E2 −Ei −
5

∑
j=1

Ej ,

which is not a line in Lemma 3.3.2 unless i = 2, in which case L = C0. Finally, if LS = Rijk,

then

L ∼ π∗(OP2(2)) −Ei −Ej −Ek −E1 −L12 ∼ π∗(OP2(1)) −Ei −Ej −Ek +E2

which is not a line unless i = 1, j = 2,3 ≤ k ≤ 5 or i = 2,3 ≤ j < k ≤ 5, finishing the proof.

3.3.2 Auxiliary Q-divisors

In this section we will use the rational curves constructed in the previous section for non-singular

del Pezzo surfaces of degree 4 to show the existence of certain effective anti-canonical Q-divisors

with good local properties and controlled singularities. These Q-divisors are used in the proof

of Theorem 1.2.5, when K2
S = 4.

Lemma 3.3.8. Given an integral curve C ⊂ S with degC ≤ 2, there is an irreducible curve Z

such that Z +C ∈ ∣ −KS ∣.

Proof. Given p ∈ C, denote by σ∶ S̃ → S the blow-up at p and C̃ the strict transform of C.

If degC = 1 we can assume C = E1 by Lemma 3.3.3. Consider

Q1 = ∣π∗(OP2(3)) − 2E1 −E2 −⋯ −E5∣.

Choose p ∈ E1 not passing through any other line and q = σ−1(p) ⊂ S̃, q /∈ Ẽ1 a general point.

Our choice of p and q defines a curve Z = Q1 ∈ Q1 with p ∈ Z as in section 3.3 which is

irreducible, since q is general. Indeed, only a finite number of conics pass through p so their

strict transforms in S̃ cannot pass through q due to the generality condition, but q ∈ Q1 and

has degree 3, so it is irreducible.

If degC = 2 by Lemma 3.3.5 assume C = A1. Choose p ∈ A1 such that p is not in any line

and take Z = B1 ∈ B1 as in section 3.3. Z is irreducible by the proof of Lemma 3.3.9, subcase 1.
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In both cases we have

C +Z ∼ −KS .

The following two lemmas are needed in the proof of theorems 1.2.5. We provide a joint

proof.

Lemma 3.3.9. Let S be a non-singular del Pezzo surface of degree 4. Let p ∈ S. There is an

effective Q-divisor G = ∑ giGi in S, G∼Q −KS such that

(i) (S, 2
3
G) is log canonical,

(ii) p ∈ Gi ∀Gi,

(iii) degGi ≤ 2 ∀Gi,

(iv) all Gi are irreducible and smooth.

Lemma 3.3.10. Let S be a non-singular del Pezzo surface of degree 4. Let p ∈ S, q ∈ E ⊂ S̃ σÐ→
S, where E is the exceptional curve in the blow-up σ of S at p. Suppose p belongs to, at most,

one line. There is H = ∑hiHi, an effective Q-divisor in S, with H∼Q −KS, such that:

(i) (S, 2
3
H) is log canonical,

(ii) p ∈Hi ∀Hi,

(iii) degHi ≤ 3 ∀Hi,

(iv) all Hi are irreducible and smooth,

(v) the point q ∈ H̃i, the strict transform of Hi via σ, ∀Hi such that degHi > 1.

Proof of lemmas 3.3.9 and 3.3.10. We will construct these Q-divisors explicitly, by case anal-

ysis, depending on the position of p ∈ S and q ∈ E, the exceptional divisor of the blow-up of p.

In order to do this we use curves from Table 3.3, which are lines, conics and cubics. These were

constructed depending on p and q and were possibly reducible.

Conditions (ii) and (iii) in lemma 3.3.10 will be clear by construction, as well as condition

(v), for H.

We will check log canonicity (condition (i)). Not it is enough to show that multpH ≤ 3
2
,

since if (S, 2
3
H) is not log canonical, then multpH > 3

2
by Lemma 2.3.9 (i).

The biggest task will be to prove that the curves chosen for each particular case are irre-

ducible in each situation (condition (iv)). Ultimately this is the reason for our break down into

cases. Smoothness follows from Lemma 3.3.1.

Case 1.

Assumption 1: p is not in any line. In particular p /∈ Ei for all i. Let G = A1 +B1 ∼ −KS , and

(S, 2
3
G) is log canonical, since A1 and B1 intersect either in a tacnodal point or with simple

normal crossings. Since all curves C ⊂ Supp(G) are conics, if C = La +Lb, the sum of two lines,

then p is one line, contradicting Assumption 1 .
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Subcase 1.1.

Assumption 1.1: q is not in the strict transform of conics in S passing through p. Let

H = 1
2
R + 1

6 ∑
5
i=1Qi∼Q −KS . Again, Assumption 1 and Assumption 1.1 assure that R and Qi

are irreducible, and therefore smooth, so we just need to check

2multp(H) = 2 [1

2
+ 5 ⋅ 1

6
] = 16

6
< 3.

Subcase 1.2.

Assumption 1.2: The point q ∈ C̃, the strict transform of a conic in S. By Assumption 1,

q /∈ L̃, for L a line in S. Without loss of generality assume C = A1, which is irreducible (use

Lemma 3.3.5). Observe that given a conic C ′ ≠ A1 with p ∈ C ′ in Lemma 3.3.4, then A1 ⋅C ′ = 1

unless C ′ = B1. If (A1 ⋅B1)∣p = 1 then A1 is the only conic such that q ∈ Ã1. Suppose this is the

case. Let

H = 1

2
A1 +

1

2
R125 +

1

2
R134∼Q −KS .

The point q ∈ R̃125 ∩ R̃124 by Lemma 3.3.7, since p does not lie in a line. We need to show R125

and R134 are irreducible. By relabelling, it is enough to show it for R125. Suppose R125 = Ca+Lb
where Ca is a conic and Lb is a line. p ∈ Ca and p /∈ Lb, by Assumption 1 . In particular Ca = A1.

Then

Lb ∼ R125 −A1 = −E1 +E3 +E4

which is not a line by Lemma 3.3.2. Finally

2multp(H) = 2 [1

2
+ 1

2
+ 1

2
] = 3.

Suppose (A1 ⋅B1)∣p = 2. Then q = B̃1 ∩ Ã1. Let

H = A1 +B1 ∼ −KS .

Clearly A1,B1 are irreducible by the assumption an (S, 2
3
H) is log canonical by Case 1.

Case 2. Suppose p ∈ L, a line in S and no other line. By Lemma 3.3.3 we can consider L = E1.

Assumption 2: p ∈ E1 and p /∈ L, any other line different than E1. Take

G = 1

3

5

∑
j=2

Aj +
1

3
B1 +

2

3
E1∼Q −KS .

B1 is irreducible. Since, if it was not irreducible, then

π∗(OP2(1)) −E1 ∼ B1 = La +E1,

where p /∈ La ∼ B1 − E1 ∼ π∗(OP2(1)) − 2E1, a line in S, but there is no such a line in S by

Lemma 3.3.2.

The curves Aj are irreducible too. If they were not irreducible, then

π∗(OP2(2)) −
5

∑
k=1
k≠j

Ek∼QAj = Lb +E1,
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where

p /∈ Lb = Aj −E1 ∼ π∗(OP2(2)) − 2E1 −
5

∑
k=2
k≠j

Ek

is a line, but there is no such a line in S, by Lemma 3.3.2.

Claim 3.3.11. (S, 2
3
G) is log canonical.

Proof. Since

E1 ⋅Aj = B1 ⋅E1 = Aj ⋅B1 = Aj ⋅Ak = 1, j ≠ 1, k ≠ j, k ≠ 1,

they intersect each other transversely so we blow up once to obtain simple normal crossings:

σ∗(λG +KS̃)∼QλG̃ + ((4 ⋅ 1

3
+ 1

3
+ 2

3
)λ − 1)F1 = λG̃ + ( 7

10
λ − 1)F1,

and λ = 2
3

makes Disc(S,λD) ≥ −1.

Subcase 2.1.

Assumption 2.1: q /∈ C̃ for C any line or conic in S. In particular q /∈ Ẽ1. Let

H = 1

8
∑

2≤j<k≤5

R1jk +
1

8

5

∑
i=2

Qi +
1

4
E1∼Q −KS

q ∈ Q̃i, R̃1jk by Lemma 3.3.7 since p does not lie in two lines. All R1jk and Qi are irreducible,

since otherwise they would split in a conic Ca and a line Lb and either q ∈ C̃a or q ∈ L̃b,
contradicting the assumption. Moreover

2(multp(H)) = 2(1

8
⋅ 6 + 1

8
⋅ 4 + 1

4
⋅ 1) = 3.

Subcase 2.2.

Assumption 2.2: q ∈ C̃, for some conic C in S but q /∈ L̃, for all lines L in S. In particular C

is irreducible and q /∈ Ẽ1. By lemmas 3.3.4 and 3.3.5 we can assume that

C ∼ π∗(OP2(2)) −
5

∑
i=1
i≠k

Ei ∼ Ak, for k ≠ 1.

where p ∈ C = Ak, k ≠ 1, with q ∈ C̃. Moreover, since q ∈ Ãk, Assumption 2.2 assures it is

irreducible.

Without loss of generality, suppose k = 5. Suppose there is another conic C ′ in S such that

p ∈ C ′, q ∈ C̃ ′ and C ′ ≠ A5. Since p ∈ C ′ ∩E1, by Lemma 3.3.4 either C ′ = B1 or C ′ = Aj , for

j ≠ 1,5. However A5 ⋅B1 = 1, Ai ⋅A5 = 1 for i ≠ 1,5. Therefore in both cases C ′ and A5 intersect

transversely and q /∈ C̃ ′. Let

H = 3

5
A5 +

1

5
(R125 +R135 +R145) +

1

5
Q5 +

2

5
E1∼Q −KS . (3.11)

q ∈ Q̃5, R̃1jk by Lemma 3.3.7 since p does not lie in two lines.

We already know that A5 and E1 are irreducible. Suppose Q5 is reducible. Then Q5 =
A5 +Lb, where Lb is a line. But then

Lb ∼ Q5 −A5 ∼ π∗(OP2(1)) − 2E5
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which is not one of the lines in S, by Lemma 3.3.2.

If R125 is reducible, then there is a line La such that

La ∼ R125 −A5 ∼ −E5 +E4 +E3

which is not a line in Lemma 3.3.2. By relabelling, it is clear that R135 and R145 are irreducible

too.

Lemma 3.3.12. If p ∈ A5 ∩ E1 and q ∈ Ã5, q /∈ L̃, for any line L in S, then (S, 2
3
H) is log

canonical, for H as in (3.11).

Ã5 R̃125 R̃135 R̃145 Q̃5 Ẽ1 F1

Ã5 1 1 1 1 0 1

R̃125 1 1 1 0 1

R̃135 1 1 0 1

R̃145 1 0 1

Q̃5 0 1

Ẽ1 1

Table 3.4: Intersection numbers for Lemma 3.3.12.

Proof. Let σ0 ∶ S0 → S be the blow up at p with exceptional divisor F1 with q ∈ F1. Table 3.4

gives the intersection numbers in S0. Since all curves in Table 3.4 intersect normally and pass

through q, we just need to blow up this point to obtain simple normal crossings. Let σ ∶ S̃ → S

be the composition of both blowing up maps and F2 be the second exceptional divisor. Then:

σ∗(λH +KS̃)∼QλH̃ + ((3

5
+ 3 ⋅ 1

5
+ 1

5
+ 2

5
)λ − 1)F1+

((7

5
+ 9

5
)λ − 2)F2,

and for λ = 2/3, (S,λH) is log canonical.

Subcase 2.3.

Suppose that in Assumption 2 q ∈ L̃ for some line L in S. Then L = E1.

Assumption 2.3: q ∈ Ẽ1. Suppose q ∈ C̃ where C is a conic in S. As in case 2.1 we can

assume, by using Lemma 3.3.4 and Lemma 3.3.5 that C = A5 ∼ π∗(OP2(2)) − ∑4
i=1Ei. C is

irreducible, since otherwise La ∼ A5 −E1 ∼ π∗(OP2(2)) − 2E1 −∑4
i=2Ei, would be a line.

Since C is irreducible, it intersects E1 transversely at p and since q ∈ Ẽ1, then q /∈ C̃. So q

does not belong to the strict transform of any conic. Now, take

H = Q1 +E1 ∼ −KS ,

and, providing Q1 is irreducible, (S, 2
3
H) is log canonical, since Q and E1 intersect each other

at worst at a tacnodal point. Since p is not the intersection of two lines, q ∈ Q̃1 by Lemma 3.3.7.

Since q is not on the strict transform of any conic, if Q1 is not irreducible, then Q1 = E1 +Ca,

where Ca is a (possibly irreducible) conic such that q /∈ C̃a, p ∈ Ca. But

Ca = Q1 −E1 ∼ π∗(OP2(3)) − 3E1 −
5

∑
i=2

Ei

69



is not an irreducible conic, by Lemma 3.3.4. If it was the union of two lines, by Lemma 3.3.2,

one of them should be C0, but then

Lb = Ca −C0 ∼ π∗(OP2(1)) − 2E1

is not one of the lines in Lemma 3.3.2.

3.3.3 Proof of Theorem 1.2.5 in degree 4

We prove Theorem 1.2.5 in the case K2
S = 4.

Claim 3.3.13.

glct(S) ≤ 2

3

Proof. Take p = E1 ∩ L12 and the conic A2, which is irreducible (see case 3 in the proof of

Lemma 3.3.9) and isomorphic to P1. Consider G = E1 + L12 + A2 ∼ KS . We are done, since

lctp(S,G) = 2/3, and

glct(S) = inf{lctr(S,D) ∶ r ∈ S, D∼QKS} ≤
2

3
.

We need to show glct(S) ≥ 2
3
. We proceed by contradiction. Suppose there is an effective

Q-divisor

D = ∑diDi∼Q −KS , di > 0 ∀i

such that (S,λD) is not log canonical for some λ < 2
3
. Then LCS(S,λD) ≠ ∅.

Lemma 3.3.14. LCS(S,λD) contains only isolated points.

Proof. If C ⊂ LCS(S,λD), where C is a curve, then C = Di for some Di such that λdi ≥ 1, by

Lemma 2.3.9 (ii) i.e. di > 3
2
. Then

4 = −KS ⋅D = ∑di deg(Di) >
3

2
deg(Di),

so deg(Di) ≤ 2. Using Lemma 3.3.8 choose a curve Z such that Di+Z is cut out by a hyperplane

section of S passing through Di such that Z is irreducible. We have Di +Z ∼ −KS∼QD. Hence

degZ = Z ⋅D = (−KS +Di)(−KS) = 4 − degDi. (3.12)

In particular degZ ≥ 2, so Z ⋅Dj ≥ 0 for all irreducible Dj (since only lines can have negative

self-intersection). Then

(Z ⋅D) ≥ di(Z ⋅Di) = di(−KS −Di) ⋅Di = di (degDi − (degDi − 2)) = 2di (3.13)

by the genus formula, since all lines and conics in S are rational. But then (3.12) and (3.13)

give a contradiction:

3 ≥ 4 − deg(Di) ≥ 2di > 3.
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Let p ∈ LCS(S,λD), i.e. the pair (S,λD) is not log canonical at some point p.

Lemma 3.3.15. The point p is not in the intersection of two lines.

Proof. Suppose for contradiction that p is a pseudo-Eckardt point. By Lemma 3.3.3 we may

choose π∶S → P2 such that p = E1 ∩ L12. For L = E1, L12 we have that L ⊆ Supp(D) since

otherwise

1 = L ⋅D ≥ multpD > 1

λ
> 1,

by Lemma 2.3.9 (i). Hence we may writeD = aE1+bL12+Ω where a, b > 0 and E1, L12 /⊆ Supp(Ω).
Observe that the curve A2 in Table 3.3 with p ∈ A2 is irreducible, since otherwise there

would be lines passing through p with rational classes

A2−E1 ∼ π∗(OP2(2))−2E1−E3−E4−E5, or A2−L12 ∼ π∗(OP2(1))+E2−E3−E4−E5,

which is impossible by Lemma 3.3.2. Since

A2 ⋅E1 = A2 ⋅L12 = L12 ⋅E1 = 1,

the pair (S,λ(A2 +E1 +L12)) is log canonical for λ ≤ 2
3

(see proof of Claim 3.3.13). Therefore,

by Lemma 2.3.7 we may assume that A2 /⊂ Supp(D). We conclude

2 ≥D ⋅A2 ≥ a + b +multpΩ ≥ a + b. (3.14)

Now observe that

1 = E1 ⋅D ≥ −a + b +multpΩ,

1 = L12 ⋅D ≥ a − b +multpΩ,

and adding these two equations it follows that multpΩ ≤ 1. The hypotheses of Theorem 2.3.11

are satisfied. Therefore one of the following holds:

2(1 − λa) < L12 ⋅ (λΩ) = λ(1 − a + b)

2(1 − λb) < E1 ⋅ (λΩ) = λ(1 + a − b).

Since the roles of a and b are symmetric, it is enough to disprove the latter equation to obtain

a contradiction. Indeed, the last inequality implies

2 < λ(1 + a + b) < 3λ < 2

by 3.14, a contradiction.

Let G be the effective Q-divisor in Lemma 3.3.9. Recall that (S,λG) is log canonical and

that all irreducible components Gj ⊂ Supp(G) satisfy p ∈ Gj . By Lemma 2.3.7, we can assume

∃Gj ⊂ Supp(G) an irreducible curve such that Gj /⊂ Supp(D). Then

2 ≥ degGj = (−KS) ⋅Gj =D ⋅Gj ≥ multp(D) ⋅multp(Gj) ≥ multp(D).
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Therefore, we have bounded the multiplicity of D at p:

2 ≥ multp(D) ≥ 3

2
. (3.15)

Let σ ∶ S̃ Ð→ S be the blow-up of p with exceptional divisor E. Applying Lemma 2.3.5 to

(S,λD), there is some q ∈ E such that the pair

(S̃, λD̃ + (λmultpD − 1)E)

is not log canonical at some point q ∈ E. By (3.15), the pair is log canonical near q ∈ E.

Since λmultpD − 1 ≤ 1 by (3.15), applying Lemma 2.3.9 (i) to this pair we obtain, that for

some q ∈ E:

multq(D̃) +multpD > 3. (3.16)

Given p ∈ S and q ∈ E ⊂ S̃ as above, we apply Lemma 3.3.10 to obtain an effective Q-

divisor H on S such that (S,λH) is log canonical with p ∈ Hj for all irreducible components

Hj ⊂ Supp(H) and q ∈ H̃j whenever degHj > 1.

By Lemma 2.3.7 we may assume that ∃Hi such that Hi /⊂ Supp(D).

Claim 3.3.16. If degHi = 1, then Hi ⊂ Supp(D).

Proof. Suppose Hi /⊂ Supp(D). Then

3

2
≤ multp(D) ≤ multp(D) ⋅multp(Hi) ≤D ⋅Hi = (−KS) ⋅Hi = 1

which is a contradiction.

Hence, we can assume ∃Hj /⊂ Supp(D) and q ∈ H̃j , p ∈Hj and 2 ≤ deg(Hj) ≤ 3. Then

H̃j ⋅ D̃ =Hj ⋅D −multp(Hj)multp(D) ≤ 3 −multp(D).

But H̃j /⊂ Supp(D̃), so

3 −multp(D) ≥ H̃j ⋅ D̃ ≥ multq(D̃),

contradicting (3.16). This completes the proof.
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Chapter 4

Dynamic α-invariant of smooth

del Pezzo surfaces

Let S be a smooth del Pezzo surface over k = C. In this chapter we compute α(S, (1 − β)C)
when C ∈ ∣ −KS ∣ is a smooth curve. In the first section we show which other C we could take.

Each of the sections afterwards deals with each non-singular del Pezzo surfaces when C ∈ ∣−KS ∣,
with decreasing degree.

4.1 The dynamic α-invariant on del Pezzo surfaces

In order to apply Theorem 1.1.9, we need an effective Q-divisor D with simple normal crossings

such that −(KS +(1−β)D) is ample for 0 < β ≪ 1. An obvious choice is to take D ∼ −KS . The

only other choice when D is a smooth divisor is to take D ≅ P1. However not all rational curves

satisfy the ampleness condition. The following Theorem classifies which are the possibilities

when D is an irreducible smooth curve other than D ∼ −KS .

Theorem 4.1.1. Let S be a non-singular del Pezzo surface and C ≅ P1 a non-singular curve

in S. The following are equivalent

(i) −(KS + (1 − β)C) is ample for 0 < β ≪ 1,

(ii) 0 < −KS ⋅C ≤K2
S − 2.

Proof. We first prove (i) implies (ii). Consider the short exact sequence

0Ð→ OS(−KS − 2C) Ð→ OS(−KS −C) Ð→ OC(−(KS +C)∣C) Ð→ 0. (4.1)

Since −(KS+(1−β)C) is ample for sufficiently small β, then −(KS+C) is nef. Suppose it is also

big. Then so is −2(KS + C). Hence by Kawamata-Viehweg vanishing theorem (see Theorem

2.1.8)

H1(S,OS(−KS − 2C)) =H1(KS + (−2(KS +C))) = 0.

The long exact sequence in cohomology of (4.1) is exact:

0Ð→H0(S,OS(−KS − 2C)) Ð→H0(S,OS(−KS −C)) Ð→
Ð→H0(C,OC(−(KS +C)∣C)) Ð→H1(S,OS(−KS − 2C)) = 0.
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By adjunction

h0(OC(−(KS +C)∣C)) = h0(OC(−KC)) = h0(OP1(2)) = 3

so we can lift a global section s∣C ∈H0(C,OC(−(KS +C)∣C)) to s ∈H0(S,OS(−KS −C)) such

that its vanishing locus is div(s) = L ∼ −KS −C.

By Nakai-Moishezon criterion (Theorem 3.1.2), since −(KS + (1 − β)C) is ample, then

0 < (−KS − (1 − β)C) ⋅L
= −KS ⋅ (−KS −C) − (1 − β)C ⋅ (−KS −C)
=K2

S +KS ⋅C + (1 − β)KS ⋅C + (1 − β)C2

=K2
S + (2 − β)KS ⋅C + (1 − β)(−KS ⋅C − 2)

by the genus formula applied to C ≅ P1:

C2 = −KS ⋅C + 2pa(C) − 2 = −KS ⋅C − 2. (4.2)

Therefore

0 < (−KS − (1 − β)C) ⋅L
=K2

S + (2 − β)KS ⋅C + (1 − β)(−KS ⋅C − 2)
=K2

S + (2 − β + β − 1)KS ⋅C − 2 + 2β

=K2
S +KS ⋅C − 2 + 2β,

Observe that K2
S ,KS ⋅C ∈ Z since S is smooth. If 0 < β < 1

2
, then

0 = ⌈−2β⌉ ≤ ⌈K2
S +KS ⋅C − 2⌉ =K2

S +KS ⋅C − 2.

In particular this proves (ii) when −2(KS +C) is big.

Now suppose that −2(KS +C) is not big. Since it is nef, then, using (4.2).

0 = (KS +C)2 =K2
S + 2KS ⋅C +C2 =K2

S +KS ⋅C − 2,

which upon rearrangement gives the desired result.

Now we will prove (ii) implies (i). For degrees 1 and 2 there are no rational curves satisfying

(ii). Indeed,

K2
S − 2 ≤ 0 < −KS ⋅C.

If K2
S = 3, then C is a line. Consider divisors Q ∼ −KS −C. Since Q ⋅ (−KS) =K2

S −degC ≥ 2, by

Proposition 3.1.18, h0(S,OS(−KS −C)) ≥ 2. Therefore we can assume Q is an effective divisor.

Since by impossing linear conditions, we may assume that Q ∈ Q, a pencil of conics, we

may choose Q to be irreducible. Indeed, if this was not the case, all Q ∈ Q would split as the

union of two lines, but since Q is a pencil of conics, there would be a infinite number of lines,

contradicting Lemma 3.1.13.

Since Q is an irreducible conic, by Lemma 3.1.5, Q is nef. Suppose there is an irreducible
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curve E ⊂ S such that

0 ≥ −(KS + (1 − β)C) ⋅E = (Q + βC) ⋅E ≥ β(C ⋅E). (4.3)

If C = E, then C ⋅E = −1 and (−KS) ⋅C = 1, giving a contradiction:

0 ≥ −(KS + (1 − β)C) ⋅C = degC − (1 − β)C2 = 1 + (1 − β) ≥ 1 > 0.

If C ≠ E, then (4.3) implies C ⋅ E = 0 and (−(KS + (1 − β)C) ⋅ E = degE > 0, which is also a

contradiction.

We have proven that (ii) implies (i) when K2
S ≤ 3. We will carry out an induction on the

degree of S. Suppose (ii) forK2
S > 3. If C is a (−1)-curve, let π∶ S̃ → S be the blow-up of a general

point p /∈ C. The surface S̃ is a del Pezzo surface. Let C̃ be the strict transform of C in S and let

E be the exceptional divisor. Then C̃ ≅ P1 and −KS̃ ⋅C̃ = 1. Hence 0 < −KS̃ ⋅C̃ = 1 ≤K2
S̃
−2 since

K2
S̃
≥ 3. By the induction hypothesis −(KS̃ + (1 − β)C̃) is ample ∀β ∈ (0, β0) where 0 < β0 ≪ 1.

Let Q ⊂ S be any irreducible curve and Q̃ be its strict transform in S̃. Let m = multpQ ≥ 0. If

Q = C, then m = 0 and

−(KS + (1 − β)C) ⋅Q = degC − (1 − β)C2 = degC + (1 − β) > 0.

Suppose Q ≠ C. Then

− (KS + (1 − β)C) ⋅Q = π∗(−(KS + (1 − β)C)) ⋅ (Q̃ +mE)
= − (KS̃ −E + (1 − β)C̃)
= − (KS̃ + (1 − β)C̃) ⋅ Q̃ +E ⋅ Q̃ > E ⋅ Q̃ =m ≥ 0,

by the inductive hypothesis. Hence, by Nakai-Moishezon criterion −(KS + (1 − β)C) is ample,

since p /∈ C and −KS is ample.

Now suppose C is not a (−1)-curve. Let π∶ S̃ → S be the blow-up of a general point p ∈ S.

Let E be the exceptional divisor of π. Since p is general and C2 ≥ 0, then S̃ is a del Pezzo

surface. Note that since C is smooth, C̃ ⋅E = 1. Hence

C̃ ⋅ (−KS̃) = −C ⋅KS − 1 ≤K2
S − 3 =KS̃ − 2,

and the pair (S̃, C̃) satisfies (ii).

By the inductive hypothesis −(KS̃ + (1 − β)C̃) is ample for 0 < β ≪ 1. Let Q ⊂ S be any

irreducible curve and Q̃ be its strict transform in S̃. By Nakai-Moishezon criterion −(KS̃ +(1−
β)C̃) ⋅ Q̃ > 0. Therefore

− (KS + (1 − β)C) ⋅Q
= π∗(−(KS + (1 − β)C))(Q̃ +mE)
= −(KS̃ −E + (1 − β)C̃ + (1 − β)E)Q̃
= −(KS̃ + (1 − β)C̃) ⋅ Q̃ + βQ̃ ⋅E > 0,

and by Nakai-Moishezon criterion, the divisor class −(KS + (1 − β)C) is ample.

Corollary 4.1.2. Let S be a non-singular del Pezzo surface and C ≅ P1 a non-singular curve
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in S. The following are equivalent

(i) −(KS + (1 − β)C) is ample ∀β ∈ (0,1],

(ii) 0 < −KS ⋅C ≤K2
S − 2.

Proof. By Theorem 4.1.1 it is enough to show that the following are equivalent:

(i) −(KS + (1 − β)C) is ample ∀β ∈ (0,1],

(ii) −(KS + (1 − β)C) is ample for 0 < β ≪ 1.

Clearly (i) implies (ii). To see that (ii) implies (i) observe that if two Q-divisors A,B are ample,

then ∀α ∈ [0,1] the Q-divisor αA + (1 − α)B is ample, since ample divisors form a cone.

Let A = −(KS + (1 − β0)C for 0 < β0 ≪ 1 such that A is ample and let B = −KS , which is

ample. Given β ∈ (0,1], we can choose α = 1−β
1−β0

< 1 whenever β0 ≤ β, which is always the case

since β0 can be chosen to be arbitrarily small. It is clear that α > 0. Then the Q-divisor

αA + (1 − α)B = −(KS + α(1 − β0)C) = −(KS + (1 − β)C)

is ample.

4.2 Projective plane

Lemma 4.2.1. Let S = CP2 and C ∼ −KS be a smooth cubic curve. Then

α(S, (1 − β)C) ≤ ω ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 3β

9β
for

1

6
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(4.4)

Proof. It is a well known fact (see [Ful89, Ex. 5.24]) that any smooth and reduced cubic curve

C in S can be given local coordinates (x, y) such that around some point p = (0,0) ∈ C its

equation is

y2 − x(x − 1)(x − ε) = 0, ε ≠ 0,1.

Such a point p is called a flex point, since the local intersection of C with the tangent line L at

p is 3. In fact, there are 9 such points in a cubic curve (see [Ful89, Ex. 5.23, Corollary]).

Let L be the line with local equation y = 0. Then

(C ⋅L)∣p = dimC ( C[x, y]
⟨y2 − x(x − 1)(x − ε), y⟩) = dimC(C⊕C⟨x⟩ ⊕C⟨x2⟩) = 3.

The minimal log resolution f ∶ S̃ → S of the log pair (S,D = (1 − β)C + λβ(3L)) consists of 3

consecutive blow-ups. The log pullback is:

f∗(KS+(1−β)C+λβ(3L))∼QKS̃+(1−β)C̃+λβ(3L̃)+(3λβ−β)E1+(6λβ−2β)E2+(9λβ−3β)E3.
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We conclude

α(S, (1 − β)C) ≤ min{lct(S, (1 − β)C,βC), lct(S, (1 − β)C,3βL)}

=min{1,
1

3β
,
1 + β
3β

,
1 + 2β

6β
,
1 + 3β

9β
} = ω,

giving the desired result.

Theorem 4.2.2. Let S = P2 and C ∼ −KS be a smooth cubic curve. Then

α(S, (1 − β)C) = ω ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 3β

9β
for

1

6
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(4.5)

Proof. By Lemma 4.2.1 α(S, (1 − β)C) ≤ ω. If α(S, (1 − β)C) < ω, then there is an effective

Q-divisor D∼Q −KS , such that

(S, (1 − β)C + λβD) (4.6)

is not log canonical at some point p ∈ S for some λ < ω. We have

λβ <

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β for 0 < β ≤ 1

6
,

1 + 3β

9
for

1

6
≤ β ≤ 2

3
,

1

3
for

2

3
≤ β ≤ 1.

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

6
for 0 < β ≤ 1

6
,

1

3
for

1

6
≤ β ≤ 1.

≤ 1

3
(4.7)

Since glct(S) = 1
3
, by Lemma 2.1.22 the pair (4.6) is not log canonical at p ∈ C and it is log

canonical in codimension 1.

Case 1: Suppose β ≤ 2
3
. We have

3λβ < 1

3
+ β. (4.8)

Indeed, for β ≤ 1
6

we have

3λβ < 3β = β + 2β ≤ β + 1

3
.

For 1
6
≤ β ≤ 2

3
we have

3λβ < 1 + 3β

3
= 1

3
+ β ≤ 1.

Take a general line L through p. Then L /⊆ Supp(D) and

λβmultpD ≤ λβL ⋅D ≤ 3λβ < 1

3
+ β ≤ 1,

by (4.8). Applying Theorem 2.3.12 with n = 3 we obtain

9λβ = (λβC ⋅D) > 1 + 3β. (4.9)

If β ≤ 1
6
, then we have λ < 1 and (4.9) gives a contradiction: 1 ≥ 6β > 1. If 2

3
≥ β > 1

6
, then
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λβ < 1+3β
9

and (4.9) gives a contradiction as well:

1 + 3β > 9λβ > 1 + 3β.

Case 2: 2
3
≤ β ≤ 1. Then λ < 2

3β
.

Let π∶ S̃ → S be the blow-up of p with exceptional curve E. The pair

(S̃, (1 − β)C̃ + λβD̃ + (λβmultpD − β)E) (4.10)

is not log canonical at some q ∈ E. Observe that λβmultpD − β ≤ 1. In fact, if this was not the

case then

multpD > 1 + β
λβ

> 3(1 + β) > 3,

by (4.7). But then, taking a general line L ⊂ S through p we obtain

3 = L ⋅D ≥ multpD > 3

which is absurd.

We claim that q ∈ C̃. If this was not the case, the pair

(S̃, (λβ)D̃ + (λβmultpD − β)E)

would not be log canonical at q ∈ E, but then by Lemma 2.3.9 (iii) we would obtain the following

inequality:
1

3
multpD > λβmultpD = E ⋅ (λβD) > 1

where we use (4.7). Now we take a general line L through p to obtain a contradiction:

3 = L ⋅D ≥ multpD > 3.

Hence q = E ∩C. Let L be the unique line through p such that L̃∩E = {q}. Note 3L ∼ −KS .

By the proof of Lemma 4.2.1 the pair (S, (1 − β)C + λβ3L) is log canonical. Since multpD ≤ 3,

the pair

(S, (1 − β)C + (λβmultpD)L)

is also log canonical, by (4.7). By lemma 2.3.5 the pair

(S̃, (1 − β)C̃ + (λβmultpD − β)E + (λβmultpD)L̃) (4.11)

is log canonical. We apply Lemma 2.3.8 to pairs (4.10) and (4.11) with (1 − β)C̃ + (3λβ − β)E
as fixed boundary to obtain a pair

(S̃, (1 − β)C̃ + λβD̃′ + (λβmultpD − β)E) (4.12)

which is not log canonical at q ∈ E where E, L̃, C̃ /⊆ Supp(D̃′) and such that D̃′∼QD̃ with D̃′

effective. By linear equivalence we deduce that multpD = multpD
′ where D′ = π∗(D̃′). On one

hand we have

3 −multpD
′ = D̃′ ⋅ L̃ ≥ multqD̃

′. (4.13)
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On the other hand, by Lemma 2.3.9 (i) applied to the pair (4.12) we deduce

1 − 2β + λβ(multpD
′ +multqD̃

′) > 1

which implies

multpD
′ +multqD̃

′ > 2β

λβ
> 2β

3
≥ 4

where we first use (4.7) and then β ≥ 2
3
. This gives a contradiction by the means of (4.13),

finishing the proof.

4.3 Smooth quadric surface P1
× P1

Lemma 4.3.1. Let S = P1 × P1 and C ∈ ∣ −KS ∣ a smooth elliptic curve. Then

α(S, (1 − β)C) ≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1.

(4.14)

Proof. S has two rulings S → P1. Let F1 be a fibre of any ruling S → P1 such that (F1 ⋅C)∣p = 2

at a point p. Let F2 be the fibre through p of the other ruling. Observe that (F2 ⋅ C)∣p = 1,

since F2 ⋅ F1 = 1. Notice that 2(F1 + F2) ∼ −KS . the minimal log resolution f ∶ S̃ → S of

(S, (1 − β)C + λβ(2F1 + 2F2) is obtained after two consecutive blow-ups. We compute the log

pullback:

f∗(KS + (1 − β)C + λβ(2F1 + 2F2))∼QKS̃ + (1 − β)C̃ + λβ(2F̃1 + 2F̃2)
+ (4λβ − β)E1 + (6λβ − 2β)E2.

Therefore

α(S, (1 − β)C ≤ min{lct(S, (1 − β)C,βC), lct(S, (1 − β)C,β(2F1 + 2F2)}

= min{1,
1 + β
4β

,
1 + 2β

6β
} = min{1,

1 + 2β

6β
},

finishing the proof.

Theorem 4.3.2. Let S = P1 × P1 and C ∈ ∣ −KS ∣ a smooth elliptic curve. Then

α(S, (1 − β)C) = ω =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1.

(4.15)

Proof. By Lemma 4.3.1 α(S, (1 − β)C) ≤ ω. If α(S, (1 − β)C) < ω, then there is an effective

Q-divisor D∼Q −KS such that

(S, (1 − β)C + λβD) (4.16)
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is not log canonical for some 0 < λ < ω. First observe that

λβ < ωβ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β for 0 < β ≤ 1

4
,

1 + 2β

6
for

1

4
≤ β ≤ 1

≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

4
for 0 < β ≤ 1

4
,

1

2
for

1

4
≤ β ≤ 1

≤ 1

2
. (4.17)

Since glct(S) = 1
2
, by Lemma 2.1.22, the pair (4.16) is not log canonical at an isolated p ∈ C

and is log canonical in codimension 1. Let F1, F2 be the fibres through p of each of the rulings

S → P1. By the proof of Lemma 4.3.1, the pair

(S, (1 − β)C + 2λβ(F1 + F2))

is log canonical at p. By Lemma 2.3.8 applied to this pair and (4.16), we may assume, without

loss of generality, that F1 /⊆ Supp(D). This implies that

multpD ≤D ⋅ F1 = (−KS) ⋅ F1 = 2. (4.18)

As a consequence

λβmultpD < 1

4
+ β. (4.19)

Indeed if 0 < β ≤ 1
4
, we have

λβmultpD < βmultpD ≤ 2β ≤ β + 1

4
.

On the contrary, if 1
4
≤ β ≤ 1, using (4.18) we obtain

λβmultpD < 1 + 2β

6
⋅ 2 = 2

3
β + 1

3
+ 1

4
− 1

4
= 1

4
+ 2

3
β + 1

3
⋅ 1

4
≤ β + 1

4
,

and (4.19) is proven for all 0 < β ≤ 1. Notice that using (4.17) and (4.18) we obtain

λβmultpD < 1.

Together with (4.19) we are in the hypotheses of Theorem 2.3.12 for n = 4, i.e.

λβmultpD ≤ min{1, β + 1

4
}

and we conclude

8λβ = (λβD ⋅C)∣p > 1 + 4β. (4.20)

If 0 < β ≤ 1
4
, then λ < 1 and (4.20) becomes

8β > 1 + 4β

implying β > 1
4
, a contradiction. On the other hand, if 1

4
≤ β ≤ 1, then (4.20) implies

8 ⋅ 1 + 2β

6
> 8λβ > 1 + 4β,

giving as a result β < 1
4
, which is also impossible, finishing the proof.
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4.4 Hirzebruch surface F1

Lemma 4.4.1. Let S = F1 and C ∈ ∣ −KS ∣ smooth. Let E be the unique curve in S such that

E2 = −1. Let γ∶S → P1 be the ruling given by the linear system ∣π∗(L) −E∣ where π ∶ S → P2 is

the contraction of E. Let F be the unique fibre of γ passing through r = E ∩ C. If F ∩ C = r
(i.e. (F ⋅C)∣p = 2), then

α(S, (1 − β)C) ≤ ω1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 2β

8β
for

1

6
≤ β ≤ 5

6
,

1

3β
for

5

6
≤ β ≤ 1.

(4.21)

Otherwise

α(S, (1 − β)C) ≤ ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(4.22)

Proof. Recall that C ∼ −KS ∼ 3F + 2E and F ⋅E = 1, F 2 = 0. Let D = 3F + 2E1. Let f ∶ S̃ → S

be the minimal log resolution of

(S, (1 − β)C + λβ(3F + 2E)).

Since F ⋅ C = 2, if F ⋅ C = {r}, then the minimal log resolution consists of two consecutive

blow-ups and the log pullback is

f∗(KS + (1 − β)C+λβ(3F + 2E))∼QKS̃ + (1 − β)C̃ + λβ(3F̃ + 2Ẽ)
+ (5λβ − β)F1 + (8λβ − 2β)F2,

where F1, F2 are exceptional divisors of f . Therefore

α(S, (1 − β)C) ≤ min{lct (S, (1 − β)C,βC) , lct (S, (1 − β)C,β (3F + 2E))}

= min{1,
1

2β
,

1

3β
,
1 + β
5β

,
1 + 2β

8β
} = ω1

giving the desired result.

Conversely, if (F ⋅C)∣r = 1, then the minimal log resolution consists of one blow-up. In this

case, the log pullback is

f∗(KS + (1 − β)C + λβ(3F + 2E))∼QKS̃ + (1 − β)C̃ + λβ(3F̃ + 2Ẽ) + (5λβ − β)F1.

Hence

α(S, (1 − β)C) ≤ min{lct (S, (1 − β)C,βC) , lct (S, (1 − β)C,β (3F + 2E))}

= min{1,
1

2β
,

1

3β
,
1 + β
5β

,} = ω2,

finishing the proof.
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We need the following auxiliary result:

Lemma 4.4.2. The following inequalities

(i) 2ω2β ≤ 1
4
+ β

(ii) 1 + 4β ≥ 8ω2β

hold for ω1, ω2 as in the statement of Lemma 4.4.1.

Proof. We prove (i): If 0 < β ≤ 1
4
, then ω2 = 1 and

2ω2β ≤ 2β = β + β ≤ 1

4
+ β.

If 1
4
≤ β ≤ 2

3
, then ω2 = 1+β

β
and

2ω2β = 1

5
(2 + 2β) = β − 3

5
β + 2

5
≤ 1

4
+ β.

If 2
3
≤ β ≤ 1, then ω2 = 1

3β
and

2ω2β = 2

3
≤ β < 1

4
+ β.

We prove (ii): If 0 < β ≤ 1
4
, then ω2 = 1 and

8ω2β = 8β = 4β + 4β ≤ 1 + 4β.

If 1
4
≤ β ≤ 2

3
, then ω2 = 1+β

5β
and

8ω2β = 8
1 + β

5
= 1 + 4β + 3

5
− 12

5
β ≤ 1 + 4β − 12

5
⋅ 2

3
+ 9

15
< 1 + 4β.

If 2
3
≤ β ≤ 1, then ω2 = 1

3β
and

8ω2β = 8

3
= 1 + 5

3
≤ 1 + 5

2
β < 1 + 4β.

Theorem 4.4.3. Let S = F1 and C ∈ ∣ −KS ∣ smooth. Let E be the unique curve in S such that

E2 = −1. Let γ∶S → P1 be the ruling given by the linear system ∣π∗(OP2(1)) −E∣ for π ∶ S → P2,

the contraction of E. Let F be the unique fibre of γ passing through r = E ∩ C. If F ∩ C = r
(i.e. (F ⋅C)∣r = 2), then

α(S, (1 − β)C) = ω1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 2β

8β
for

1

6
≤ β ≤ 5

6
,

1

3β
for

5

6
≤ β ≤ 1.

(4.23)
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Otherwise

α(S, (1 − β)C) = ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(4.24)

Observation 4.4.4. The first case of Theorem 4.4.3 is special, since not always we have

F ∩C = F ∩E for any fibre F , whereas the second case is clearly the general one. Since the del

Pezzo surfaces of degree 8 do not have moduli by Lemma 3.1.12, which case we are in depends

only on the choice of curve C ∼ −KF1 .

Proof of Theorem 4.4.3. By Lemma 4.4.1 in each case we have α(S, (1 − β)C) ≤ ωi. Suppose

that α(S, (1 − β)C) < ωi. Then there is an effective Q-divisor D∼Q −KS such that the pair

(S, (1 − β)C + λβD) (4.25)

is not log canonical at some p ∈ S where 0 < λ < ωi.
Step 1: We reduce to the case p ∈ C.

First observe that ω1 ≤ ω2 and

ω1β ≤ ω2β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β for 0 < β ≤ 1

4
,

1 + β
5

for
1

4
≤ β ≤ 2

3
1

3
for

2

3
≤ β ≤ 1

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4
for 0 < β ≤ 1

4
,

1

3
for

1

4
≤ β ≤ 2

3
1

3
for

2

3
≤ β ≤ 1

≤ 1

3
. (4.26)

Hence, in each case λβ ≤ glct(S) by Theorem 1.2.5. Applying Lemma 2.1.22 we conclude that

the pair (4.25) is log canonical in codimension 1 and not log canonical at an isolated p ∈ C. By

Theorem 3.1.7 and Lemma 3.1.13 there is a unique (−1)-curve E and a unique model π∶S → P2

which contracts E to a point o.

Step 2: We show that if E /⊂ Supp(D) or F /⊂ Supp(D), then (S, (1 − β)C + ω2βD) is

log canonical at r = E ∩C ∩ F .

Suppose (S, (1 − β)C + ω2βD) is not log canonical at r.

If E /⊂ Supp(D) then, by Lemma 2.3.9 (i),

1 = E ⋅D ≥ multrD > 1 − (1 − β)
ω2β

= 1

ω2
≥ 1,

which is a contradiction.

If F /⊂ Supp(D), then

1 ≥ 2

3
≥ 2ω2β = F ⋅ (ω2βD) ≥ ω2βmultrD. (4.27)

By Lemma 4.4.2 (i)

2ω2β ≤ 1

4
+ β.

Hence, by (4.27)

ω2βmultrD ≤ min{1,
1

4
+ β}.
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We apply Theorem 2.3.12 with n = 4 to conclude

8ω2β = (C ⋅ (ω2βD))∣r > 1 + 4β.

This contradicts Lemma 4.4.2 (ii).

Step 3: If (F ⋅C)∣r = 1, where r = E∩C ∩F , then (S, (1−β)C +ω2βD) is log canonical

at r.

Suppose (S, (1 − β)C + ω2βD) is not log canonical.

Observe that if the pair (4.25) is not log canonical at r we have

multpD > β

ω2β
= 1

ω2
> 1, (4.28)

by Lemma 2.3.9 (i), since r ∈ C. We have

3F + 2E ∼ −KS .

The pair

(S, (1 − β)C + ω2β(3F + 2E))

is log canonical by the proof of Lemma 4.4.1. By Lemma 2.3.8, we may assume that either

E /⊆ Supp(D) or F /⊆ Supp(D). These are precisely the hypotheses of Step 2. Step 3 follows.

Step 4: We reduce to steps 2 and 3.

Suppose p ∈ C and p /∈ E. In particular p ≠ r. Suppose

(S, (1 − β)C + λβD)

is not log canonical at p. Let Lp be the only fibre of γ∶S → P1 passing through p. Recall that

Lp ∼ π∗(OP2(1))−E. Moreover Lp is irreducible. Let H be the unique element in ∣π∗(OP2(1))∣
such that p ∈H and (H ⋅C)∣p ≥ 2. The curve H is the strict transform via π of the unique line

in P2 tangent to π(C) at π(p). Observe that degH = 3.

Case (a): Suppose that H is reducible. Then it splits as the union of a line and a

conic. However, the only line in S is E, so H = E +Lp with (C ⋅Lp)∣p = 2.

Let L be the strict transform of a general line L̂ ⊂ P2 through π(p) ∈ P2. Then L is a cubic

and L /⊆ Supp(D), since the sublinear system of ∣L̂∣ fixing π(p) is a pencil. Then

1 > 3λβ = λβD ⋅L ≥ λβmultpD (4.29)

by (4.26). Let σ∶ S̃ → S be the blow-up of p with exceptional divisor F1. Since p /∈ E, the surface

S̃ is a del Pezzo surface. By Lemma 2.3.5 the pair

(S̃, (1 − β)C̃ + λβD̃ + (λβmultpD − β)F1)

is not log canonical at some q ∈ F1. By (4.29) we have that such q is isolated, i.e. the discrepancy
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of the pair (4.25) along F1 is smaller or equal than 1. Note that

D̃ + (multpD − 1)F1

∼Qσ∗(D) − (multpD)F1 + (multpD − 1)F1 (4.30)

∼Qσ∗(−KS) − F1∼Q −KS̃ .

Let σ̄∶ S̃ → S̄ be the contraction of Ẽ. Observe that since Ẽ2 = σ∗(E)2 = E2 = −1, then S̄ is a

non-singular del Pezzo surface by Lemma 3.1.20. By Lemma 3.1.12 we have S ≅ S̄ and since

Ẽ ∩F1 = ∅, the morphism σ̄ is an isomorphism around q. Notice that since λ < 1, the Q-divisor

β(1 − λ)F1 is effective. Therefore by Lemma 2.1.5, the pair

(S̄, (1 − β)C̄ + λβ(D̄ + (multpD − 1)F̄1)) (4.31)

is not log canonical at q̄ = σ̄(q) ∈ F̄1 where C̄ = σ̄∗(C̃), D̄ = σ̄∗(D̃) and F̄1 = σ̄∗(F1) and

L̄p = σ̄∗(L̃p). By (4.30)

D̄ + (multpD − 1)F̄1∼Qσ∗(−KS̃) ∼ −KS̄ .

Therefore (4.31) is log canonical around q̄ = F̄1 ∩ C̄ by Step 1. Hence q̄ = F̄1 ∩ C̄ where F̄1 is the

only (−1)-line in S̄ ≅ F1.

Now, observe that since (Lp ⋅C)∣p = 2, then q = L̃p ∩ C̃ ∪F1 and L̃p ⋅ C̃ = 1. Therefore, since

σ̄ is an isomorphism near q, (L̄p ⋅ C̄)∣q̄ = 1. Moreover (F̄1)2 = −1. Therefore we may substitute

S̄ for S, C̄ for C, L̄p for F , q̄ for r and F̄1 for E and D̄ + (multpD − 1)F̄1 for D. We are in the

situation of Step 3, giving a contradiction, since λ < ωi ≤ ω2.

Case (b): Suppose that the curve H ∼ π∗(OP2(1)) is irreducible. Recall that 3 ≥
(H ⋅ C)∣p ≥ 2, p ∈ H, p /∈ E, and Lp ∼ π∗(OP2(1)) − E is the only fibre of γ∶F1 → P1 passing

through p.

We claim that (Lp⋅C)∣p = 1. Observe that Ĉ = π∗(C) is a smooth cubic in P2 and L̂p = π∗(Lp)
and Ĥ = π∗(H) are smooth lines passing through p̂ = π(p) ≠ π(E). Moreover Ĥ is tangent to

to Ĉ at p̂. Since there is only one tangent line at C at π(p), if (Lp ⋅C)∣p = 2, then L̂p is tangent

to Ĉ at p̂. But then Ĥ = L̂p and H = Lp +E1, a contradiction with our assumption. Therefore

(Lp ⋅C)∣p = 1.

Observe that 2H +Lp ∼ −KS . The pair

(S, (1 − β)C + ω2β(2H +Lp))

is log canonical at p by Lemma A.1.1. By Lemma 2.3.8 we may assume that either H /⊂ Supp(D)
or Lp /⊂ Supp(D).

Suppose Lp /⊂ Supp(D). Then

1 ≥ 2

3
≥ 2ω2β = Lp ⋅ (ω2βD) ≥ ω2βmultrD. (4.32)

By Lemma 4.4.2 (i)

2ω2β ≤ 1

4
+ β.

Hence, by (4.32)

ω2βmultrD ≤ min{1,
1

4
+ β}.
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We apply Theorem 2.3.12 with n = 4 to conclude

8ω2β = (C ⋅ (ω2βD))∣r > 1 + 4β.

This contradicts Lemma 4.4.2 (ii).

Hence we conclude that H /⊆ Supp(D). Then

1 > 3λβ = λβD ⋅H ≥ λβmultpD (4.33)

by (4.26). Let σ∶ S̃ → S be the blow-up of p with exceptional divisor F1. Since p /∈ E, the surface

S̃ is a del Pezzo surface. By Lemma 2.3.5 the pair

(S̃, (1 − β)C̃ + λβD̃ + (λβmultpD − β)F1)

is not log canonical at some q ∈ F1. By (4.28) we have that such q is isolated, i.e. the discrepancy

of the pair (4.25) along F1 is smaller or equal than 1. Note that

D̃ + (multpD − 1)F1

∼Qσ∗(D) − (multpD)F1 + (multpD − 1)F1 (4.34)

∼Qσ∗(−KS) − F1∼Q −KS̃ .

Let σ̄∶ S̃ → S̄ be the contraction of Ẽ. Observe that since Ẽ2 = σ∗(E)2 = E2 = −1, then S̄ is a

non-singular del Pezzo surface by Lemma 3.1.20. By Lemma 3.1.12 we have S ≅ S̄ and since

Ẽ ∩F1 = ∅, the morphism σ̄ is an isomorphism around q. Notice that since λ < 1, the Q-divisor

β(1 − λ)F1 is effective. Therefore by Lemma 2.1.5, the pair

(S̄, (1 − β)C̄ + λβ(D̄ + (multpD − 1)F̄1))

is not log canonical at q̄ = σ̄(q) ∈ F̄1 where C̄ = σ̄∗(C̃), D̄ = σ̄∗(D̃) and F̄1 = σ̄∗(F1) and

H̄ = σ̄∗(H̃). By (4.34)

D̄ + (multpD − 1)F̄1∼Qσ∗(−KS̃) ∼ −KS̄ .

Hence the pair (4.31) is log canonical in codimension 1 and q̄ ∈ C̄, by step 1. Hence q̄ = F̄1 ∩ C̄
where F̄1 is the only (−1)-line in S̄ ≅ F1.

Since q = H̃ ∩ C̃ ∪ F1 and σ̄ is an isomorphism near q, we have

(H̄ ⋅ C̄)∣q̄ = (H̃ ⋅ C̃)∣q = (H ⋅C)∣p − 1 ≥ 1.

Moreover (F̄1)2 = −1.

Since E ⋅H = 0, then (H̄)2 = (H̃)2 =H2 − 1 = 0. Therefore we may substitute S̄ for S, C̄ for

C, H̄ for F , q̄ for r and F̄1 for E and D̄ + (multpD − 1)F̄1 for D we are in the situation of Step

2, where F /⊂ Supp(D), giving a contradiction, since λ < ωi ≤ ω2. This finishes the proof.

86



4.5 Del Pezzo surface of degree 7

Notation 4.5.1. Let S be a non-singular del Pezzo surface of degree 7. By Lemma 3.1.12, S

is unique up to isomorphism. By Lemma 3.1.21 there is a unique morphism π ∶ S → P2, up to

isomorphism in P2, that contracts two (−1)-curves E1,E2 to points p1, p2 in P2. By Lemma

3.1.13 there is a unique line L ≠ E1,E2 with

L ∼ π∗(OP2(1)) −E1 −E2,

corresponding to the strict transform of the unique line in P2 passing through p1 and p2. We

have L ⋅E1 = L ⋅E2 = 1. Let C be a smooth curve, C ∈ ∣ −KS ∣. The curve C intersects each of

E1,E2 and L at precisely one point. At most two of these points coincide.

Let Li be the unique curve

Li ∼ π∗(OP2(1)) −Ei,

containing ri = Ei ∩C, for i = 1,2, which is precisely the strict transform of the unique line L̄i

in P2 tangent to C̄ = π∗(C) at pi. If L∩C ≠ r1, r2, then let r = L∩C and R be the unique curve

passing through r such that

R ∼ π∗(OP2(1))

and R is tangent to C at r, i.e. (C ⋅R)∣r ≥ 2.

Alternatively, we can realise R as the strict transform of the unique line in P2 tangent to

π(C) at π(r). since π is an isomorphism around r, then

(π(L) ⋅ π(C))∣r = (C ⋅L)∣r = C ⋅L = 1.

In particular, R ≠ L.

The different intersections of these curves will give different values for α(S, (1−β)C). These

are described precisely in Lemma 4.5.2 and Theorem 4.5.3, but we refer to the reader to figures

in Table 4.1 for a graphical interpretation.

Lemma 4.5.2. Let S be the non-singular del Pezzo surface of degree 7 and C ∈ ∣ −KS ∣ be a

smooth curve. We follow notation 4.5.1.

(i) If C contains a pseudo-Eckardt point, then

α(S, (1 − β)C) ≤ ω4 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(4.35)

(ii) If C contains no pseudo-Eckardt point but (C ⋅Li)∣ri = 2, for some i = 1,2, then

α(S, (1 − β)C) ≤ ω3 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1

2
,

1

3β
for

1

2
≤ β ≤ 1.

(4.36)
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E1 E2

C

L

α(S, (1 − β)C) = ω4

E1 E2

C

L

r1

L1

α(S, (1 − β)C) = ω3

E1 E2

C

L

r1

L1

r

R

α(S, (1 − β)C) = ω2

E1 E2

C

L

r1

L1

r

R

α(S, (1 − β)C) = ω1

Table 4.1: Arrangements of lines and intersection of relevant curves in the non-singular del
Pezzo surface of degree 7.

(iii) If C contains no pseudo-Eckardt point, (C ⋅ Li)∣ri = 1, for both i = 1,2 and (R ⋅C)∣r = 3,

then

α(S, (1 − β)C) ≤ ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 3β

7β
for

1

4
≤ β ≤ 4

9
,

1

3β
for

4

9
≤ β ≤ 1.

(4.37)

(iv) If C contains no pseudo-Eckardt point, (C ⋅ Li)∣ri = 1, for both i = 1,2 and (R ⋅C)∣r ≤ 2,

then

α(S, (1 − β)C) ≤ ω1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

(4.38)

Proof. First observe that ω4 ≤ ω3 ≤ ω2 ≤ ω1 which will explain the statement logic once we find

an effective Q-divisor D∼Q −KSfor each case, such that lct(S, (1 − β)C,βD) = ωi.

Suppose C has a pseudo-Eckardt point p. Without loss of generality let p = E1∩L. Observe

that 3L + 2E1 + 2E2 ∼ −KS and let f ∶ S̃ → S be the minimal log resolution of the pair (S, (1 −
β)C +λβ(3L+ 2E1 + 2E2)), consisting of the blow-up of p with exceptional divisor F1. The log

pullback is

f∗(KS + (1 − β)C + λβ(3L + 2E1 + 2E2))∼QKS̃ + (1 − β)C̃ + λβ(3L̃ + 2Ẽ1 + 2Ẽ2) + (5λβ − β)F1.
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Therefore

α(S, (1 − β)C) ≤ min{lct (S, (1 − β)C,βC) , lct (S, (1 − β)C,β (3L + 2E1 + 2E2))}

= min{1,
1

2β
,

1

3β
,
1 + β
5β

} = ω4.

Suppose C contains no pseudo-Eckardt point. Since C ⋅L = C ⋅Ei = L ⋅Ei = 1 and E1 ⋅E2 = 0,

the pair

(S, (1 − β)C + λβ(3L + 2E1 + 2E2))

has simple normal crossings. Hence

α(S, (1 − β)C) ≤ min{lct (S, (1 − β)C,βC) , lct (S, (1 − β)C,β (3L + 2E1 + 2E2))}

= min{1,
1

2β
,

1

3β
,} = ω1.

Suppose (C ⋅ Li)∣pi = 2 for some i = 1,2. Without loss of generality assume i = 1. Observe

that 2L1 + 2E1 + L ∼ −KS and let f ∶ S̃ → S be the minimal log resolution of the pair (S, (1 −
β)C+λβ(2L1+2E1+L)), consisting of two consecutive blow-ups of r1 with exceptional divisors

F1, F2. The log pullback is

f∗(KS+(1−β)C+λβ(2L1+2E1+L))∼QKS̃+(1−β)C̃+λβ(2L̃1+2Ẽ1+L̃)+(4λβ−β)F1+(6λβ−2β)F2.

Therefore

α(S, (1 − β)C)
≤min{lct (S, (1 − β)C,βC) , lct (S, (1 − β)C,β (3L + 2E1 + 2E2)) ,

lct (S, (1 − β)C,β (2L1 + 2E1 +L))}

=min{1,
1

2β
,

1

3β
,
1 + β
5β

,
1 + 2β

6β
,
1 + β
4β

} = ω3.

Finally, suppose (R ⋅C)∣pi = 3. Observe that L+ 2R ∼ −KS and let f ∶ S̃ → S be the minimal

log resolution of the pair (S, (1 − β)C + λβ(L + 2R)), consisting of three consecutive blow-ups

of r with exceptional divisors F1, F2, F3. The log pullback is

f∗(KS+(1−β)C+λβ(L+2R))∼QKS̃+(1−β)C̃+λβ(L̃+2R̃)+(3λβ−β)F1+(5λβ−2β)F2+(7λβ−3β)F3.

Therefore

α(S, (1 − β)C)
≤min{lct (S, (1 − β)C,βC) , lct (S, (1 − β)C,β (3L + 2E1 + 2E2)) ,

lct (S, (1 − β)C,β (L + 2R))}

=min{1,
1

2β
,

1

3β
,
1 + β
3β

,
1 + 2β

5β
,
1 + 3β

7β
} = ω2.

Theorem 4.5.3. Let S be the non-singular del Pezzo surface of degree 7 and C ∈ ∣ −KS ∣ be a

smooth curve. We follow notation 4.5.1.
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(i) If C contains a pseudo-Eckardt point, then

α(S, (1 − β)C) = ω4 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(4.39)

(ii) If C contains no pseudo-Eckardt point but (C ⋅Li)∣ri = 2, for some i = 1,2, then

α(S, (1 − β)C) = ω3 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1

2
,

1

3β
for

1

2
≤ β ≤ 1.

(4.40)

(iii) If C contains no pseudo-Eckardt point, (C ⋅ Li)∣ri = 1, for both i = 1,2 and (R ⋅C)∣r = 3,

then

α(S, (1 − β)C) = ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 3β

7β
for

1

4
≤ β ≤ 4

9
,

1

3β
for

4

9
≤ β ≤ 1.

(4.41)

(iv) If C contains no pseudo-Eckardt point, (C ⋅ Li)∣ri = 1, for both i = 1,2 and (R ⋅C)∣r ≤ 2,

then

α(S, (1 − β)C) = ω1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

(4.42)

In the rest of this section we prove Theorem 4.5.3 by case analysis.

First observe that by Lemma 4.5.2, α(S, (1−β)C) ≤ ωi. Suppose α(S, (1−β)C) < ωi. Then

there is an effective Q-divisor D∼Q −KS such that the pair

(S, (1 − β)C + λβD) (4.43)

is not log canonical at some q = q0 ∈ S for λ < ωi in each case.

Observe that

ω4 ≤ ω3 ≤ ω2 ≤ ω1 (4.44)

Lemma 4.5.4. One has that the point q ∈ C, the pair (S, (1 − β)C + λβD) is log canonical in

codimension 1 and λωi < 1
3

.

Proof. First we claim that

λβ < ωiβ ≤ 1

3
= glct(S) (4.45)

where the last equality comes from Theorem 1.2.5. If λ < ω1, then inequality (4.45) is trivial.

For the rest ωi it follows from (4.44).

By Lemma 2.1.22 the pair (4.43) is log canonical in codimension 1 and not log canonical at

some isolated q ∈ C.
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Let f1∶S1 → S be the blow-up of q with exceptional divisor F1. Let A1 be the strict transform

of any Q-divisor A in S. By Lemma 2.3.5 the pair

(S1, (1 − β)C1 + λβD1 + (λβmultqD − β)F1) (4.46)

is not log canonical at some point t1 ∈ F1. Let m1 = multt1D and m =m0 = multqD.

Lemma 4.5.5. If multqD ≤ 3, then

(S1, (1 − β)C1 + λβD1 + (λβmultqD − β)F1)

is log canonical in codimension 1 and not log canonical at t1 = q1 ∶= C1 ∩ F1.

Proof. Suppose t1 /∈ C1, then the pair

(S1, λβD
1 + (λβmultqD − β)F1)

is not log canonical at some t1 ∈ F1. Since λβmultqD ≤ 1, then the locus of log canonical

singularities of the pair consists of isolated points. By Lemma 2.3.9 (i) we have

1 ≥ λβmultqD = λβD1 ⋅ F1 > 1,

a contradiction.

For the rest of the proof of Theorem 4.5.3 we rule out the different positions of q, the point

at which

(S, (1 − β)C + λβD)

is not log canonical. We will apply Theorem 2.3.10 several times on successive blow-ups of q

and points over q.

Let S0 = S, C0 = C, D0 = D and q0 = q as in Theorem 2.3.10. Let i ≥ 1 and let fi∶Si → Si−1

be the blow-up of the point qi−1 = Ci ∩ Fi−1 with exceptional curve Fi. Let Ai−1 or A be any

Q-divisor in Si−1. We will denote its strict transform in Si by Ai. Let mi = multqiDi. Recall

from (4.46) that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1.

Lemma 4.5.6. The point q ∈ E1 ∪E2 ∪L.

Proof. Suppose q is not contained in any (−1)-curve. First observe it is enough to show that

the pair (S, (1 − β)C + λβD) is log canonical at q for λ < ω1, by (4.44).

Let Z ∼ π∗(OP2(1)) be the strict transform of a general line in P2 through π(q). Then

Z ⋅ (−KS) = 3 and Z /⊆ Supp(D), so

3 = Z ⋅D ≥ multqD. (4.47)

By Lemma 4.5.5 the pair (4.46) is not log canonical at t1 = q1 = C1 ∩ F1.

We want to apply Theorem 2.3.10 for increasing i. Observe that for i = 2 the hypothesis of

Theorem 2.3.10 (ii) is satisfied by (4.47), since then λβm0 ≤ 1, using Lemma 4.5.4. Moreover,
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this is a necessary condition to apply Theorem 2.3.10 (ii)-(iv) whenever i ≥ 1 and we will assume

it from now onwards without mentioning it for the rest of the proof. In particular, by Theorem

2.3.10 (ii) when i = 2, the pair

(S2, (1 − β)C2 + λβD2 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2) (4.48)

is not log canonical at some t2 ∈ F2.

Let H1 and H2 be the unique curves such that

Hi ∼ π∗(OP2(1)) −Ei

with q ∈ Hi. They correspond to the strict transform of the unique lines in P2 containing π(q)
and pi, respectively. Let H ∈ ∣π∗(OP2(1))∣ be the unique curve such that q ∈ H and q1 ∈ H1.

The curve H is a cubic tangent to C at q. Observe that H +H1 +H2 ∼ −KS .

Case 1: we show that if H is irreducible, then

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 = C4 ∩ F4.

If H is irreducible, by Lemma A.2.1, the pair (S, (1−β)C+ 1
3
(H +H1+H2)) is log canonical.

Applying Lemma 2.3.8 we may assume one irreducible component of (H +H1 +H2) is not in

Supp(D).
Case 1a: Suppose H /⊆ Supp(D). Then (3 −m0) =H1 ⋅D1 ≥m1, implying

m0 +m1 ≤ 3 (4.49)

and λβ(m0 +m1) ≤ 1 by Lemma 4.5.4, which in particular implies the hypothesis of Theorem

2.3.10 (ii) and (iii) when i = 2, thus t2 = F2 ∩ (C2) = q2. Hence we may apply Theorem 2.3.10

(i) with i = 3 to conclude that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. To apply parts (ii) and (iii) of Theorem 2.3.10 when i = 3,

it is enough to show that

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 +m1 +m2) − 2β ≤ 1. (4.50)

Since mj+1 ≤mj for all j, (4.49) implies that mj+1 +mj ≤ 3 for j = 0,1,2. Hence adding this 3

inequalities we obtain 2(m0 +m1 +m2) ≤ 9, which we use to claim

λβ(m0 +m1 +m2) − 2β ≤ 9

2
λβ − 2β < 9

2
ω1β ≤ 1.

Indeed, if β ≤ 1
3
, then

9

2
λβ − 2β < 9

2
β − 2β = 5

2
β ≤ 5

6
< 1.

If β > 1
3
, then λ < 1

3β
and

9

2
λβ − 2β < 3

2
− 2β = 3

2
− 2

3
= 5

6
< 1.
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Hence (4.50) is proven and Theorem 2.3.10 (iii) with i = 3 implies t3 = q3 = F3 ∩C3. Thus, we

may apply Theorem 2.3.10, part (i) with i = 4 to conclude that the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2) − 3β)F3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at some t4 ∈ F4. Since mj ≤mj−1 for j = 1,2,3, then, by (4.49) we conclude

that

λβ(
3

∑
i=0

mi) − 3β ≤ 6λβ − 3β < 6ω1β − 3β ≤ 1. (4.51)

Indeed, if β ≤ 1
3
, then 6λβ−3β < 6β−3β = 3β ≤ 1, whereas if 1

3
≤ β ≤ 1, then 6λβ−3β < 2−3β ≤ 1.

Hence we can use Theorem 2.3.10, parts (ii) and (iii) to conclude that t4 = q4 = F4 ∩C4. Hence

the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4.

Case 1b: Suppose H ⊆ Supp(D). We may write D = aH + Ω where H /⊆ Supp(Ω) and

a > 0. Let x = x0 = multqΩ and xi = multqΩ
i. Then m0 = a + x0 and m1 = a + x1. We bound

these multiplicities. Notice that H2 = 1, so 3 − a − x0 = Ω ⋅H − x0 = Ω1 ⋅H1 ≥ x1. Hence:

2 =D ⋅Hi ≥ a + x0 =m0, and 3 ≥ a + x0 + x1 =m0 + x1. (4.52)

Observe that 2H +L ∼ −KS . By Lemma A.2.3, the pair

(S, (1 − β)C + λβ(2H +L))

is log canonical. By Lemma 2.3.8 we may assume that L /⊆ Supp(D), since H ⊆ Supp(D) by

assumption. Then

1 = L ⋅D ≥ a (4.53)

Recall from (4.48) that the pair

(S2, (1 − β)C2 + λβD2 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2)

is not log canonical at some t2 ∈ F2 by Theorem 2.3.10 (i) with i = 2. We claim that

λβ(m0 +m1) − β < ω1β(m0 +m1) − β ≤ 1. (4.54)

This is a necessary condition to apply parts (ii) and (iii) of Theorem 2.3.10 with i ≥ 2 and

sufficient when i = 2, concluding t2 = F2 ∩C2 = q2. Indeed using the first equation in (4.52) we

see

λβ(m0 +m1) − β = λβ(2a + x0 + x1) − β′ ≤ 2λβ(a + x0) − β ≤ 4λβ − β < 4ω1β − β.

To prove (4.54) it is enough to show 4ω1β − β ≤ 1. Indeed, if 0 < β ≤ 1
3
, then

4ω1β − β ≤ 4β − β = 3β ≤ 1,

whereas if 1
3
≤ β ≤ 1, then 4ω1β − β = 4

3
− β ≤ 1.
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Hence, using (4.54) we may apply Theorem 2.3.10 (i) with i = 3 to deduce that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3.

Observe that since C1 ⋅H1 = 2 either (H1 ⋅C1)∣q1 = 1 or (H1 ⋅C1)∣q1 = 2.

Subcase 1b (i): Suppose (H1 ⋅C1)∣q1 = 1. Then we have q2 /∈H2 so m2 = x2 and

λβ(m0 +m1 +m2) − 2β = λβ(2a + x0 + x1 + x2) − 2β

≤λβ(a + x0 + a + x0 + x1) − 2β < 5ω1β − 2β.

If β ≤ 1
3
, then 5ω1β − 2β = 3β ≤ 1. If β ≥ 1

3
, then 5ω1β − 2β = 5

3
− 2β ≤ 1. Hence

λβ(m0 +m1 +m2) − 2β ≤ 1

holds and we may apply part (iii) of Theorem 2.3.10 with i = 3 to conclude that t3 = q3 = C3∩F3.

Moreover, since

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 +m1 +m2) − 2β ≤ 1

holds, we may also apply Theorem 2.3.10 part (i) with i = 4 to conclude that the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2) − 3β)F3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at some t4 ∈ F4.

Subcase 1b (ii): Suppose (H1 ⋅C1)∣q1 = 2. Then we have q2 ∈H2 so m2 = a + x2 and

λβ(m0 + 2m1) − 3β = λβ(3a + x0 + 2x1) − 3β

≤3λβ(a + x0) − 3β ≤ 6λβ − 3β < 6ω1β − 3β ≤ 1,

by (4.52). The last inequality follows by case analysis. Indeed, if 0 < β ≤ 1
3
, then 6ω1β − 3β =

3β ≤ 1. If 1
3
≤ β ≤ 1, then 6ω1β − 3β = 2 − 3β ≤ 1.

Now we can apply parts (ii) and (iv) of Theorem 2.3.10 with i = 3 to conclude that t3 =
C3 ∩ F3 = q3. Moreover, since

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 +m1 +m2) − 2β ≤ 1

we may also apply Theorem 2.3.10 part (i) with i = 4 to conclude that the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2) − 3β)F3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at some t4 ∈ F4.

Finishing case 1b. Observe that

λβ(m0 +m1 + 2m2) − 4β =
≤λβ(3a + x0 + x1 + x2 + x3) − 4β ≤ 2λβ(a + x0 + x1 + a) − 4β

≤7λβ − 4β < 7ωiβ − 4β ≤ 7ω1β − 4β ≤ 1

where we apply (4.52) and (4.53). The last inequality follows from case analysis. If 0 < β ≤ 1
3
,
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then 7ω1β − 4β = 3β ≤ 1, whereas if 1
3
≤ β ≤ 1, then 7ω1β − 4β = 7

4
− 4β ≤ 1.

Hence by Theorem 2.3.10 (ii) and (iv) with i = 4 we obtain that t4 = F4 ∩ C4 = q4. In

particular, the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 = F4 ∩C4.

Case 2: we show that if H is reducible, then

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 = C4 ∩ F4.

If H is reducible, then it must be the union of a line and a conic. In fact H = Hi +Ei for

some i. Without loss of generality assume i = 1. Since q /∈ E1 and

2 ≤ (H ⋅C)∣p = (H1 ⋅C)∣p ≤H1 ⋅C1 = 2,

then q1 =H1
1 ∩C1 ∩ F1. By Lemma A.2.2, the pair

(S, (1 − β)C + ω1β(2H1 +H2 +E1))

is log canonical. Then by Lemma 2.3.8 (log convexity) we may assume that some component

of 2H1 +H2 +E1 is not in Supp(D).

Case 2a: Suppose H1 /⊆ Supp(D). Then 2 −m0 =H1
1 ⋅D1 ≥m1, so

m0 +m1 ≤ 2. (4.55)

In particular, this implies λβ(m0 +m1) − β ≤ 1, which is enough to satisfy the hypothesis of

Theorem 2.3.10 parts (ii) and (iii) with i ≥ 2. Therefore t2 = F2 ∩ C2 = q2. Condition (i) of

Theorem 2.3.10, when i = 3 is also satisfied, since

λβ(m0 +m1) − 2β ≤ λβ(m0 +m1) − β ≤ 1.

Hence, the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at t3 ∈ F3. Since mi+1 ≤ mi for all i, (4.55) gives mi + mj ≤ 2 for all

1 ≤ i < j ≤ 2. Adding the 3 distinct possibilities we get 2(m0+m1+m2) ≤ 6, so m0+m1+m2 ≤ 3.

By Lemma 4.5.4, this implies λβ(m0 +m1 +m2) − 2β ≤ 1 − 2β ≤ 1, which precisely gives the

hypothesis of parts (ii) and (iii) of Theorem 2.3.10 when i = 3, so t3 = C3 ∩ F3 = q3. Since

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 +m1 +m2) − 2β ≤ 1,

then Theorem 2.3.10 (i) with i = 4, the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2) − 3β)F3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)
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is not log canonical at some t4 ∈ F4. Observe that

λβ(
3

∑
j=0

mj) − 3β ≤ 2λβ(m0 +m1) − 3β ≤ 4λβ − 3β < 4ω1β − 3β

by (4.55). We claim that 4ω1β − 3β ≤ 1. Indeed, if β ≤ 1
3
, then 4ω1β − 3β < 4β − 3β ≤ β ≤ 1 and

if 1
3
≤ β, then

4ω1β − 3β ≤ 4

3
− 3β ≤ 4

3
− 1 ≤ 1

3
≤ 1.

Conditions (ii) and (iii) of Theorem 2.3.10 are therefore satisfied for i = 4 and t4 = C4 ∩F4 = q4.

In particular the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 = F4 ∩C4.

Case 2b: Suppose H1 ⊆ Supp(D).

Write D = aH1 +Ω where H1 /⊆ Supp(Ω) and a > 0. Recall that

H1 ∼ π∗(OP2(1)) −E1

with q1 = C1 ∩H1
1 , since C1 ⋅H1

1 = 1. Let xi = multqiΩ
i. Then m0 = a + x0, m1 = a + x1 and

mi = xi for i ≥ 2. We bound the multiplicities of D:

2 =H1 ⋅D ≥ x0 + x1 (4.56)

By Lemma A.2.2, the pair

(S, (1 − β)C + λβ(2H1 +H2 +E1))

is log canonical. By Lemma 2.3.8 either E1 /⊆ Supp(D) or H2 /⊆ Supp(D). In the first case

1 =D ⋅E1 ≥ a and m0 +m1 = 2a + x0 + x1 ≤ 4

by (4.56). If H2 /⊆ Supp(D), then

2 =D ⋅H2 ≥ a + x0 and m0 +m1 ≤ 2(a + x0) ≤ 4.

In both cases, we have proved

m0 +m1 ≤ 4. (4.57)

Observe that for 0 < β ≤ 1
3

we have

4λβ − β < 4ω1β − β = 3β ≤ 1

and for 1
3
≤ β ≤ 1 inequality

4ωβ − β < 4ω1β − β = 4

3
− β ≤ 1
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also holds. Therefore, using (4.57) we have proven

λβ(m0 +m1) − β ≤ 4λβ − β ≤ 1.

This is a necessary condition to apply Theorem 2.3.10 (ii)–(iv) for i ≥ 2. We apply Theorem

2.3.10 (ii) with i = 2 to deduce that t2 = F2 ∩C2 = q2.

Furthermore, since

λβ(m0 +m1) − 2β ≤ λβ(m0 +m1) − β ≤ 1,

Theorem 2.3.10 gives that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3.

Observe that (4.56) implies

2 ≥ x0 + x1 ≥ 2x2 (4.58)

so x2 ≤ 1, but using (4.57) the following inequality holds:

m0 +m1 +m2 ≤ 4 + x2 ≤ 5. (4.59)

This implies

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 +m1 +m2) − 2β ≤ 5λβ − 2β < 5ω1β − 2β ≤ 1. (4.60)

Indeed, for 0 < β ≤ 1
3
, we have 5ω1β−2β = 3β ≤ 1 and for 1

3
≤ β ≤ 1 we have 5ω1β−2β = 5

3
−2β ≤ 1.

Inequality (4.60) and Theorem 2.3.10 (ii) with i = 3 give that t3 = C3 ∩ F3 = q3. Again,

(4.60) and Theorem 2.3.10 (i) with i = 4 gives that the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2) − 3β)F 4
3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at some t4 ∈ F4. By (4.58) and (4.59) we obtain

λβ(m0 +m1 + 2m2) − 4β ≤ 6λβ − 4β < 6ω1β − 4β ≤ 1. (4.61)

We check the last inequality: for 0 < β ≤ 1
3

we have 6ω1β − 4β = 2β ≤ 1 and for 1
3
≤ β ≤ 1 we

have 6ω1β − 4β = 2 − 4β ≤ 1. Inequality (4.61) and Theorem 2.3.10 (iv) with i = 4 give that

t4 = C4 ∩ F4 = q4.

Finishing all cases. We have that

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at t4 = C4 ∩ F4 = q4. Applying Lemma 2.3.9 (iii) with C4 we deduce

1 < C4 ⋅ (λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

= 7λβ − λβ(
3

∑
i=0

mi) + λβ(
3

∑
i=0

mi) − 4β = 7λβ − 4β ≤ 7ω1 − 4β.
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However we claim that 7ω1β − 4β ≤ 1 which gives a contradiction. Indeed, if 0 < β ≤ 1
3
, then

7ω1β − 4β = 3β ≤ 1, whereas if 1
3
≤ β ≤ 1, then 7ω1β − 4β = 7

3
− 4β ≤ 1.

We prove case (i) of Theorem 4.5.3:

Lemma 4.5.7. If C contains a pseudo-Eckardt point, then α(S, (1 − β)C) = ω4.

Proof. Recall Notation 4.5.1. We may assume that λ < ω4 and assume for contradiction that

the pair

(S, (1 − β)C + λβD)

is log canonical in codimension 1 and not log canonical at q ∈ C by Lemma 4.5.4.

Let p ∈ C be the pseudo-Eckardt point. The surface S has has two pseudo-Eckardt points,

both of them in L. Since C ⋅ L = 1, only one of them, p, lies in C. Without loss of generality

assume that p = C ∩E1.

By Lemma 4.5.6, the point q where the pair

(S, (1 − β)C + λD)

is not log canonical belongs to a line.

Case 1: Suppose q ≠ p. Then q = E2 ∩ C = r2 /∈ L. There is a birational morphism

σ∶S → P1 × P1 which contracts precisely L to a point. Since q /∈ L, the morphism σ is an

isomorphism around q. Let D̄ = σ∗(D)∼Q −KP1×P1 , C̄ = σ∗(C) ∼ −KP1×P1 , and C̄ is a smooth

curve. Since σ̄ is an isomorphism around q, the pair

(P1 × P1, (1 − β)C̄ + λβD̄)

is not log canonical at q̄ = σ(q). However

λ < ω4 ≤ ω3 ≤ α(P1 × P1, (1 − β)C̄)

which contradicts Theorem 4.3.2.

Case 2: p = q. There is a birational morphism σ∶S → F1 which contracts E2 to a point.

Since q /∈ E2, the morphism σ is an isomorphism around q. Let D̄ = σ∗(D)∼Q − KF1 and

C̄ = σ∗(C) ∼ −KS . Observe the curve C̄ is smooth since C ⋅E2 = 1. The unique (−1)-curve of

F1 is Ē1 = σ∗(E1). The curve L̄ = σ∗(L) is the unique fibre through the point q̄ = C̄ ∩ Ē of the

unique P1-fibration γ∶F1 → P1. Observe that (L̄ ⋅ C̄)∣q̄ = (L ⋅C)∣q = 1, since σ is an isomorphism

around q and q̄. Therefore, Theorem 4.4.3 gives that

α(F1, (1 − β)C̄) = ω4. (4.62)

On the other hand, since σ is an isomorphism near q and q̄, the pair

(F1, (1 − β)C̄ + λβD̄)

is not log canonical at q̄ = σ∗(q), but λ < ω4. This contradicts (4.62).

Remark 4.5.8. There is an alternative proof to Lemma 4.5.7 for the case in which p = q.

The new proof is somewhat independent of the classification of del Pezzo surfaces and the
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computation of their dynamic alpha–invariants. Since p = E1 ∩ L and (S, (1 − β)C + λβD) is

not log canonical at p for some λ < ω3 then E1, L ⊆ Supp(D), since otherwise

1 ≥ 1 − β + λβ = ((1 − β)C + λβD) ⋅L > 1,

by Lemma 2.3.9 (i), which is clearly a contradiction. The proof for E1 is the same. Therefore

we write D = aE1 + bL +Ω where a, b > 0 and E1, L /⊆ Supp(D). Then

1 =D ⋅E1 ≥ −a + b +multpΩ ≥ −a + b,

1 =D ⋅E1 ≥ a − b +multpΩ ≥ a − b.

Adding these two equation we see that inequality 1 ≥ multpΩ holds. Let Q be the strict

transform of a general conic in P2 passing through p1 and such that π(Q) ⋅ π(L)∣p1 ≥ 2 (i.e.

π(Q) and π(L) are tangent at p1). Equivalently, Q ∈ ∣π∗(OP2(2)) − E1∣ is a general element.

The curve Q /⊆ Supp(D), since Q is general. Hence

4 = Q ⋅D ≥ a + b + x0 ≥ a + b.

Since E ⋅ L = 1 and multpΩ ≤ 1, then we may apply Theorem 2.3.11 to (S, (1 − β)C + λβD) at

p = L ∩E1 and conclude that either

2(1 − λβa) < L ⋅ ((1 − β)C + λβΩ), or

2(1 − λβb) < E1 ⋅ ((1 − β)C + λβΩ)

hold. Since the roles of a and b are symmetric, it is enough to disprove the first equation to

achieve a contradiction and finish the proof. Indeed if the first equation holds, then, since

λ < ω4 we have

2(1 − ω4βa) < 1 − β + ω4β(1 + b − a).

In particular

1 + β < ω4β(1 + a + b) ≤ 5ω4β ≤ 1 + β,

a contradiction. The last inequality is easy to see. If 0 < β ≤ 1
4
, then 5ω1β = 5β = 4β +β ≤ 1+β.

If 1
4
≤ β ≤ 2

3
, then 5ω1β = 1 + β and if 2

3
≤ β ≤ 1, then 5ω1β = 5

3
= 1 + 2

3
≤ 1 + β.

We prove case (ii) of Theorem 4.5.3:

Lemma 4.5.9. If C does not contains a pseudo-Eckardt point but (C ⋅ Li)∣ri = 2 for some

i = 1,2 then α(S, (1 − β)C) = ω3.

Proof. Recall Notation 4.5.1. Suppose λ < ω3. By Lemma 4.5.6, the point q ∈ C where the pair

(S, (1 − β)C + λD)

is not log canonical belongs to a line.

Case 1: Suppose q ∈ Ei for i = 1 or i = 2. Without loss of generality suppose q ∈ E1.

Then, by assumption q /∈ L. There is a birational morphism σ∶S → P1×P1 which contracts L to a

point. Since q /∈ L, the morphism σ is an isomorphism around q. Let D̄ = σ∗(D)∼Q−KP1×P1 , C̄ =
σ∗(C) ∼ −KP1×P1 , and C̄ is a smooth curve, since C ⋅L = 1. Since σ̄ is an isomorphism around
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q, the pair

(P1 × P1, (1 − β)C̄ + λβD̄)

is not log canonical at q̄ = σ(q). However

λ < ω3 = α(P1 × P1, (1 − β)C̄)

which contradicts Theorem 4.3.2.

Case 2: Suppose q /∈ Ei. Then q ∈ L by Lemma 4.5.6. There is a birational morphism

σ∶S → F1 which contracts E2 to a point. Since q /∈ E2, the morphism σ is an isomorphism around

q. Let D̄ = σ∗(D)∼Q−KF1 and C̄ = σ∗(C) ∼ −KF1 . Observe the curve C̄ is smooth since C̄ ⋅E2 = 1.

The unique (−1)-curve of F1 is Ē1 = σ∗(E1). Let L̄ = σ∗(L). Observe that σ is an isomorphism

around r1, since r1 /∈ E2. The curve L̄1 = σ∗(L1) is the unique fibre through r̄1 = σ∗(r1) = C̄∩Ē1

of the unique P1-fibration γ∶F1 → P1. Observe that (L̄1 ⋅ C̄)∣r̄1 = (L1 ⋅ C)∣r1 = 2, since σ is an

isomorphism around q and q̄. Therefore, Theorem 4.4.3 gives that

α(F1, (1 − β)C̄) = ε ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 2β

8β
for

1

6
≤ β ≤ 5

6
,

1

3β
for

5

6
≤ β ≤ 1.

≥ ω3. (4.63)

On the other hand, since σ is an isomorphism near q and q̄, the pair

(F1, (1 − β)C̄ + λβD̄)

is not log canonical at q̄ = σ∗(q), but we may choose λ so that ε ≤ λ < ω3. This contradicts

(4.63).

For the rest of the proof of Theorem 4.5.3 we rule out the different positions of q, the point

at which

(S, (1 − β)C + λβD)

is not log canonical. We will apply Theorem 2.3.10 several times on successive blow-ups of q

and points over q. Since q ∈ C, by Lemma 4.5.7 we may assume q ≠ E1 ∩L.

Let S0 = S, C0 = C, D0 = D and q0 = q as in Theorem 2.3.10. Let i ≥ 1 and let fi∶Si → Si−1

be the blow-up of the point qi−1 = Ci ∩ Fi−1 with exceptional curve Fi. Let Ai−1 or A be any

Q-divisor in Si−1. We will denote its strict transform in Si by Ai. Let mi = multqiDi. Recall

from (4.46) that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1.

Lemma 4.5.10. The point q /∈ L.

Proof. Suppose q ∈ L. Recall Notation 4.5.1. If (C ⋅Li)∣ri = 1 for i = 1 or i = 2, then λ < ω1 and

if (C ⋅ L1)∣r1 = 2, or equivalently for L2, then λ < ω2. Observe that since q ∈ C and C ∩ L = r,
then q = r.

100



The curve L ⊆ Supp(D), since otherwise

1 = L ⋅D ≥ multqD > 1 − (1 − β)
λβ

= 1

λ
> 1,

by Lemma 2.3.9 (i). Therefore, we write D = aL +Ω where L /⊆ Supp(Ω). Let xi = multqiΩ
i for

i ≥ 0. Since L ⋅C = 1, then m0 = a + x0 and mi = xi for i ≥ 1.

By Lemma A.2.4, the pair

(S, (1 − β)C + λβ(L + 2R))

is log canonical. By Lemma 2.3.8, we may assume that R /⊆ Supp(D). Hence

3 = R ⋅D ≥ a + x0 + x1 =m0 +m1 if (R ⋅C)∣q0 = 2,

3 = R ⋅D ≥ a + x0 + x1 + x2 =m0 +m1 +m2 if (R ⋅C)∣q0 = 3, (4.64)

since R ⋅L = 1 and 3 ≥ (R ⋅C)∣q0 ≥ 2. In particular

λβm0 < ω1βm0 ≤ 3ω1β ≤ 1

by Lemma 4.5.4. This is one of the hypotheses of Theorem 2.3.10 (ii)-(iv) wheni ≥ 2 ande we

will assume it from now onwards. Observe that

1 = L ⋅D ≥ −a + x0

which adding it to (4.64) implies

4 ≥ 2x0 + x1 ≥ 3x1 if (R ⋅C)∣q0 = 2 and

4 ≥ 2x0 + x1 + x2 ≥ 4x2 if (R ⋅C)∣q0 = 3.

Therefore

4

3
≥m1 = x1 ≥ x2 =m2 if (R ⋅C)∣q0 = 2 and 1 ≥ x2 ≥ x3 =m3 if (R ⋅C)∣q0 = 3. (4.65)

As we will see, (4.64) and (4.65) are very strong inequalities.

Case 1: Suppose (R ⋅C)∣q0 = 3. Then

λβ(
i−1

∑
j=0

mj) − (i − 1)β ≤ λβ(
i−1

∑
j=0

mj) ≤ 3λβ ≤ 1

for i ≤ 3. Moreover:

λβ(
3

∑
j=0

mj) − 3β < 4ωiβ − 3β ≤ 4ω1β − 3β ≤ 1.

Indeed, if 0 < β ≤ 1
3
, then 4ω1β − 3β = β ≤ 1, while if 1

3
≤ β ≤ 1, then 4ω1β − 3β = 4

3
− 3β ≤ 1.

Hence, by Theorem 2.3.10 (iii) with i = 1, . . . ,4, the pair

(Si, (1 − β)Ci + λβDi + (λβ(
i−2

∑
j=0

mj) − (i − 1)β)F ii−1 + (λβ(
i−1

∑
j=0

mj) − iβ)Fi)
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is not log canonical at qi = Fi ∩Ci for i = 1, . . . ,4. In particular, for i = 4, the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 = F4 ∩C4. But then we apply Lemma 2.3.9 (iii) with C4 to obtain a

contradiction:

1 < C4 ⋅ (λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)
= 7λβ − 4β ≤ 7ωiβ − 4β ≤ 7ω1β − 4β ≤ 1. (4.66)

The last inequality is easy to obtain: if 0 < β ≤ 1
3
, then 7ω1β −4β = 3β ≤ 1 and if 1

3
≤ β ≤ 1, then

7ω1β − 4β = 7
3
− 4β ≤ 1. Thus, the lemma is proven when (R ⋅C)∣q0 = 3.

Suppose that (R ⋅ C)∣q0 = 2. Inequalities (4.64) and (4.65) together with Lemma 4.5.4

imply

λβ(m0 +m1) − β < 3ω1β − β ≤ 3ω1β ≤ 1 (i = 2),

λβ(m0 +m1 +m2) − 2β < 13

3
ω1β − 2β ≤ 1 (i = 3),

λβ(m0 +m1 +m2 +m3) − 3β < 17

3
ω1β − 3β ≤ 1 (i = 4).

Indeed, if 0 < β ≤ 1
3
, then 13

3
ω1β − 2β = 7

3
β ≤ 7

9
≤ 1 and 17

3
ω1β − 3β = 8

3
β ≤ 8

9
≤ 1, while if

1
3
≤ β ≤ 1, then 13

3
ω1β − 2β = 13

9
− 2β ≤ 7

9
≤ 1 and 17

3
ω1β − 3β = 17

9
− 3β ≤ 8

9
≤ 1.

Hence, by Theorem 2.3.10 (iii) with i = 1, . . . ,4, the pair

(Si, (1 − β)Ci + λβDi + (λβ(
i−2

∑
j=0

mj) − (i − 1)β)F ii−1 + (λβ(
i−1

∑
j=0

mj) − iβ)Fi)

is not log canonical at qi = Fi ∩Ci where i = 1, . . . ,4. In particular, for i = 4, the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 = F4 ∩C4. But then we apply Lemma 2.3.9 (iii) with C4 to obtain a

contradiction:

1 < C4 ⋅ (λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)
= 7λβ − 4β < 7ω1β − 4β ≤ 1,

as in (4.66). The last inequality is easy to obtain: if 0 < β ≤ 1
3
, then 7ω1β − 4β = 3β ≤ 1 and if

1
3
≤ β ≤ 1, then 7ω1β − 4β = 7

3
− 4β ≤ 1.

Therefore q ∈ (E1 ∪E2) ∖L, since we may relabel these exceptional curves, we may assume

without loss of generality that q ∈ E1 ∩C. The following Lemma finishes the proof of Theorem

4.5.3.

Lemma 4.5.11. The point q /∈ E1.

Proof. Suppose q = E1 ∩C. Notice that E1 ⊆ Supp(D), since otherwise

1 = E1 ⋅D ≥ multqD > 1 − (1 − β)
λβ

= 1

λ
> 1,
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by Lemma 2.3.9 (i). Therefore, we write D = aE1 + bL1 +Ω where E1, L1 /⊆ Supp(Ω), a > 0 and

b ≥ 0. Let xi = multqiΩ
i.

Recall from (4.46) that the pair

(S1, (1 − β)C1 + λβD1 + λβ(m0 − β)F1)

is not log canonical at some t1 ∈ F1, where λ < ω1 if (C ⋅L1)∣r1 = 1 and (C ⋅L1)∣r1 = 2 if λ < ω2.

By Lemma A.2.5, the pair

(S, (1 − β)C + λβ(2L1 +L + 2E1))

is log canonical. Observe that 2L1 + L + 2E1 ∼ −KS . By Lemma 2.3.8, either L /⊆ Supp(D) or

L1 /⊆ Supp(D) and either

1 = L ⋅D ≥ a, or b = 0. (4.67)

In either case, since (L1)2 = 0 we have

2 = L1 ⋅D ≥ a + x0 + x1, (4.68)

1 = E1 ⋅D ≥ −a + b + x0. (4.69)

Observe that if a ≤ 1, adding (4.67) twice and (4.69), we obtain m0 = a+ b+x0 ≤ 3 while if b = 0,

then (4.68) gives m0 = a + b + x0 + x1 ≤ 2 < 3. Therefore

λβm0 − β ≤ λβm0 < 3ω1β ≤ 1,

by Lemma 4.5.4. This is a necessary condition for Theorem 2.3.10 (ii), (iii) and (iv) when i ≥ 2

and we will assume it from now on when invoking that Lemma.

By Theorem 2.3.10 (ii) with i = 1 we have t1 = F1 ∩C1 = q1. Moreover, by Theorem 2.3.10

(i), the pair

(S2, (1 − β)C2 + λβD2 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2)

is not log canonical at some t2 ∈ F2.

Case 1: Suppose that (C ⋅L1)r1 = 1. Since (C ⋅L1)r1 = 1, then λ < ω1. If b = 0, then

λβ(m0 +m1) − β ≤ λβ(a + x0 + x1) − β < 2ω1β − β ≤ 4ω1β − β ≤ 1

by (4.67). If a ≤ 1, then

λβ(m0 +m1) − β ≤ λβ(a + b + 2x0 + x1) − β < 4ω1β − β ≤ 1 (4.70)

by (4.67), (4.68) and (4.69). The last inequalities follow by case analysis: if 0 < β ≤ 1
3
, then

4ω1β − β = 3β ≤ 1 while if 1
3
≤ β ≤ 1, then 4ω1β − β = 4

3
− β ≤ 1. Hence, by Theorem 2.3.10 (iii)

with i = 2, we have t2 = F2 ∩C2 = q2. Moreover, since

λβ(m0 +m1) − 2β < λβ(m0 +m1) − β ≤ 1

103



then Theorem 2.3.10 (i) with i = 3 gives that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some point t3 ∈ F3.

If b = 0, then

λβ(m0 +m1 +m2) − 2β ≤ λβ(a + x0 + x1 + x2) − 2β ≤ λβ(2a + 2x0 + 2x1) − 2β ≤ 4ω1β − 2β ≤ 1

by (4.67) and (4.70). If a ≤ 1, then

λβ(m0 +m1 +m2) − 2β ≤ λβ(a + b + 2x0 + x1) − 2β ≤ 4ω1β − 2β ≤ 1

by (4.67), (4.68), (4.69) and (4.70). Applying Theorem 2.3.10 (iii) with i = 3, we conclude that

t3 = F3 ∩C3 = q3.

Now, notice that if b = 0, then

λβ(m0 +m1 +m2 +m3) − 3β < ω1β(a + x0 + x1 + x2 + x3) − 3β ≤ 6ω1β − 3β ≤ 1

by (4.67) while if a ≤ 1, then

λβ(m0 +m1 +m2 +m3) − 3β < ω1β(a + b + x0 + x1 + 2x2) − 3β ≤ 6ω1β − 3β ≤ 1 (4.71)

by (4.67), (4.68) and (4.69). The last part of each inequality follows by case analysis: if 0 < β ≤ 1
3
,

then 6ω1β − 3β = 3β ≤ 1, while if 1
3
≤ β ≤ 1, then 6ω1β − 3β = 2 − 3β ≤ 1.

Hence, by Theorem 2.3.10 (iii) with i = 4, the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 3β)F3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at F4 ∩C4 = q4. But then, the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4. Lemma 2.3.9 (iii) applied with C4 gives:

1 < C4 ⋅ (λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

= 7λβ − λβ(
3

∑
i=0

mi) − +λβ(
3

∑
i=0

mi) − 4β < 7ω1β − 4β.

However we claim that 7ω1β − 4β ≤ 1 which gives a contradiction. Indeed, if 0 < β ≤ 1
3
, then

7ω1β − 4β < 3β ≤ 1, whereas if 1
3
≤ β ≤ 1, then 7ω1β − 4β < 7

3
− 4β ≤ 1.

Case 2: Suppose that (C ⋅ L1)r1 = 2. Notice that λ < ω3 by the statement of Theorem

4.5.3. Recall that D = aE1 + bL1 + Ω and qi = Ci ∩ Fi. Then m0 = a + b + x0, m1 = b + x1 and

mi = xi for i ≥ 2.

Recall (4.67). If a ≤ 1, then adding (4.69) and two times (4.67) we obtain

m0 = a + b + x0 ≤ 3,
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whereas if b = 0, then by (4.68), then

m0 = a + x0+ ≤ a + x0 + x1 ≤ 2 < 3.

In both cases we have

λβm0 − 2β < 6ω3β − 2β ≤ 1.

Indeed, for 0 < β ≤ 1
4
, then 6ω3β−2β = 4β ≤ 1. For 1

4
≤ β ≤ 1

2
, we have 6ω3β−2β = 1+2β−2β = 1

and for 1
2
≤ β ≤ 1, we have 6ω3β − 2β = 2 − 2β ≤ 1.

Therefore we may apply Theorem 2.3.10 (iv) with i = 2 to conclude that t2 = C2 ∩ F2 = q2.

Since

λβ(m0 +m1) − 2β ≤ 2λβm0 − 2β ≤ 1

we may apply Theorem 2.3.10 (i) with i = 3 to conclude that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. Observe (4.67). If b = 0, then (4.68) gives

m0 +m1 +m2 = a + x0 + x1 + x2 ≤ 2(a + x0 + x1) ≤ 4 < 6

while if a ≤ 1, then adding (4.67), (4.68) and two times (4.69), we obtain

m0 +m1 +m2 = a + 2b + x0 + x1 + x2 ≤ 6.

Therefore we have proven

λβ(m0 +m1 +m2) − 2β < 6ω3 − 2β ≤ 1.

The last inequality follows by case analysis. If 0 < β ≤ 1
4
, then 6ω3β − 2β = 4β ≤ 1. If 1

4
≤ β ≤ 1

2
,

then 6ω3β − 2β = 1 + 2β − 2β = 1 and if 1
2
≤ β ≤ 1, then 6ω3β − 2β = 2 − 2β ≤ 1.

Hence we may apply Theorem 2.3.10 (iii) with i = 3 to obtain that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical only at t3 = F3 ∩C3 = q3. In particular, the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at q3.

Lemma 2.3.9 (iii) applied with C4 gives:

1 < C3 ⋅ (λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)

= 7λβ − λβ(
2

∑
i=0

mi) − +λβ(
2

∑
i=0

mi) − 3β = 7ω3β − 3β.

However we claim that 7ω3β − 3β ≤ 1 which gives a contradiction. Indeed, if 0 < β ≤ 1
4
, then

7ω3β − 3β = 4β ≤ 1, whereas if 1
3
≤ β ≤ 1

2
, then 7ω3β − 3β = 7(1+2β)

6
− 3β = 7−4β

6
≤ 1. Finally, if

1
2
≤ β ≤ 1, then 7ω3β − 3β = 7

3
− 3β ≤ 5

6
< 1.
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Therefore Theorem 4.5.3 is proven. Together with Theorem 1.1.9, we obtain the following

Corollary:

Corollary 4.5.12. Let S be a non-singular del Pezzo surface of degree 7 and C a general curve

in ∣ −KS ∣. Then (S, (1 − β)C) has a Kähler–Einstein metric with edge singularities of angle

2πβ along C for all 0 < β < 1
2

.

This result is of special interest, given that S does not accept a Kähler–Einstein metric.

4.6 Del Pezzo surface of degree 6

In this section we will follow and extend Notation 3.1.8. Let S be a non-singular del Pezzo

surface of degree 6. Given any model π∶S → P2 we have exceptional curves E1,E2,E3 ⊂ S
mapping to points p1, p2, p3 ∈ P2, respectively. The other 3 lines in S (see Lemma 3.1.13

correspond to strict transforms of lines in P2 through pi, pj . We will denote them by

Lij ∼ π∗(OP2(1)) −Ei −Ej for 1 ≤ i < j ≤ 3.

Lemma 4.6.1. Let S be a non-singular del Pezzo surface of degree 6 and C ∈ ∣ − KS ∣ be a

smooth curve.

(i) If C contains a pseudo-Eckardt point of S, then

α(S, (1 − β)C) ≤ ω3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + β
4β

for
1

3
≤ β ≤ 1.

(4.72)

(ii) If C contains no pseudo-Eckardt points but there is a model π∶S → P2 such that through

p = C ∩E1 there is a smooth rational curve L ∼ π∗(OP2(1)) −E1 satisfying (C ⋅ L)∣p = 2,

then

α(S, (1 − β)C) ≤ ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + 2β

5β
for

1

3
≤ β ≤ 3

4
,

1

2β
for

3

4
≤ β ≤ 1.

(4.73)

(iii) If C contains no pseudo-Eckardt points and for all models π∶S → P2 the unique irreducible

curve L ∈ ∣π∗(OP2(1)) −E1∣ passing through p = C ∩E1 has simple normal crossings with

C (i.e. (C ⋅L)∣p = E1), then

α(S, (1 − β)C) ≤ ω1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(4.74)

Proof. If C contains a pseudo-Eckardt point p, by Lemma 3.1.14 we can choose a model π∶S →
P2 such that p = E1 ∩L, where L is the other line intersecting p normally. Let L̄ = π∗(L) ⊂ P2.
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Since L ≠ E1, then L̄ ∼ OP2(d) for some d > 0 and

L ∼ π∗(L̄) −
3

∑
i=1

multpiL̄ ∼ π∗(OP2(d)) −
3

∑
i=1

aiEi (4.75)

where pi = π(Ei) and ai = multpiL̄ = Ei ⋅L. In particular a1 = 1. Since L is a line, we have

1 = L ⋅ (−KS) = 3d − 1 − a2 − a3,

−1 = L2 = d2 − 1 − a2 − a3.

Subtracting the first equation from the second one we obtain

d2 − 3d + 2 = 0

with roots d = 1,2. If d = 2, then a2 + a3 = 4, so ∃aj ≥ 2 since all ai ≥ 0 but all irreducible

curves of degree 2 in P2 are smooth. Hence d = 1 and either (a2, a3) = (1,0) or (a2, a3) = (0,1).
Without loss of generality suppose the former. Then L = L12 is the strict transform of the line

in P2 through p1 and p2. Let L13 be the strict transform of the line in P2 through p1 and p3.

Then

L13 ∼ π∗(OP2(1)) −E1 −E3.

Notice that

D ∶= 2E1 + 2L12 +L13 +E2 ∼ −KS

is a divisor with simple normal crossings. Let f ∶ S̃ → S be the blow-up of p = E1 ∩ L12 with

exceptional divisor E. Then f is a log resolution of (S, (1 − β)C + λβD), since

C ⋅E1 = C ⋅L12 = C ⋅L13 = C ⋅E2 = 1.

Its log pullback is

f∗(KS + (1 − β)C + λβD) ∼ −KS̃ + (1 − β)C̃ + λβD̃ + (4λβ − β)E

and therefore

α(S, (1 − β)C) ≤ min{lct(S, (1 − β)C,βC), lct(S, (1 − β)C,βD)} ≤ min{1,
1

2β
,
1 + β
4β

} = ω3.

If C contains no pseudo-Eckardt points, the pair

(S, (1 − β)C + λβD)

has simple normal crossings and we obtain

α(S, (1 − β)C) ≤ min{lct(S, (1 − β)C,βC), lct(S, (1 − β)C,βD)} ≤ min{1,
1

2β
} = ω1.

Finally, suppose C contains no pseudo-Eckardt points but there is an irreducible curve L ∼
π∗(OP2(1))−E1 as in (ii) in the statement, for some model π∶S → P2 and such that (L ⋅C)∣p = 2.

Let

D = 2L +L23 +E1
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where L23 is the unique line such that L23 ∼ π∗(OP2(1))−E1−E2. Then the pair (S, (1−β)C +
λβD) has simple normal crossings away from p = C ∩E1 ∩ L where (L ⋅C)∣p = 2. Let σ∶ S̃ → S

be the minimal log resolution of (S, (1 − β)C + λβD) with exceptional divisors F1, F2. The log

pullback is

σ∗(KS + (1 − β)C + λβD)∼QKS̃ + (1 − β)C̃ + λβD̃ + (3λβ − β)F1 + (5λβ − 2β)F2.

Therefore, we conclude

α(S, (1 − β)C) ≤ min{ω1, lct(S, (1 − β)C,βD)}

≤ min{1,
1

2β
,
1 + 2β

5β
,
1 + β
3β

} = min{1,
1

2β
,
1 + 2β

5β
} = ω2.

Theorem 4.6.2. Let S be a non-singular del Pezzo surface of degree 6 and C ∈ ∣ −KS ∣ be a

smooth curve.

(i) If C contains a pseudo-Eckardt point of S, then

α(S, (1 − β)C) = ω3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + β
4β

for
1

3
≤ β ≤ 1.

(4.76)

(ii) If C contains no pseudo-Eckardt points but there is a model π∶S → P2 such that through

p = C ∩E1 there is a smooth rational curve L ∼ π∗(OP2(1)) −E1 satisfying (C ⋅ L)∣p = 2,

then

α(S, (1 − β)C) = ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + 2β

5β
for

1

3
≤ β ≤ 3

4
,

1

2β
for

3

4
≤ β ≤ 1.

(4.77)

(iii) If C contains no pseudo-Eckardt points and for all models π∶S → P2 the unique irreducible

curve L ∈ ∣π∗(OP2(1)) −E1∣ passing through p = C ∩E1 has simple normal crossings with

C (i.e. (C ⋅L)∣p = E1), then

α(S, (1 − β)C) = ω1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(4.78)

Proof. By Lemma 4.6.1 we have that α(S, (1 − β)C) ≤ ωi for each case. If α(S, (1 − β)C) < ωi,
then ∃λ < ωi and an effective Q-divisor D∼Q −KS such that the pair

(S, (1 − β)C + λβD) (4.79)

is not log canonical at some q ∈ S. Observe that

ω3 ≤ ω2 ≤ ω1 for all 0 < β ≤ 1. (4.80)
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By Theorem 1.2.5 this implies

λβ < ωiβ ≤ ω1β ≤ 1

2
= glct(S).

Therefore by Lemma 2.1.22, the pair (4.79) is log canonical in codimension 1 and q ∈ C.

Assume the following:

Claim 4.6.3. The point q is not a pseudo-Eckardt point.

We want to apply Theorem 2.3.10 in each blow-up of the minimal log resolution of (4.79).

We will define a birational morphism f ∶S4 → S0 as a sequence of blow-ups over q which will be

biregular away from q.

Let f1∶S1 → S0 be the blow-up of q0 ∶= q with exceptional curve F1. For any Q-divisor

A = A0 in S0, let A1 be the strict transform of A0. Since C = C0 is smooth at q = q0, then

C1 ⋅ F1 = 1 and therefore C1 ∩ F1 = q1, a unique point.

For i ≥ 2, let fi∶Si → Si−1 be the blow-up of qi−1 with exceptional curve Fi. Let Ai be the

strict transform of any Q-divisor Ai−1 of Si−1. Let qi = Ci ∩Fi. Define mi = multqiD
i for i ≥ 0.

Define f ∶S4 → S by f = f1 ○ f2 ○ f3 ○ f4. Assume the following

Claim 4.6.4. If λ < ω2 or λ < ω3, then the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical only at q3 = F3 ∩C3. If < λ < ω1, then the pair

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical only at q4 = F4 ∩C4.

If λ < ω1, then we apply Lemma 2.3.9 (iii) to C4 and we obtain

1 < C4 ⋅ (λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4) =
= λβ(C ⋅D − (m0 +m1 +m2 +m3)) + λβ(m0 +m1 +m2 +m3) − 4β =
= 6λβ − 4β < 6ωiβ − 4β ≤ 6ω1β − 4β

by (4.80). This gives a contradiction and finishes the proof, since 6ω1β − 4β ≤ 1. Indeed, if

0 < β ≤ 1
2
, then

6ω1β − 4β ≤ 6β − 4β = 2β ≤ 1.

If 1
2
≤ β ≤ 1, then

6ω1β − 4β = 3 − 4β ≤ 3 − 2 = 1.

If λ < ω2 or λ < ω3, then we apply Lemma 2.3.9 (iii) to C3 and we obtain

1 < C3 ⋅ (λβD3 + (λβ(m0 +m1 +m2) − 3β)F3) =
= λβ(C ⋅D − (m0 +m1 +m2)) + λβ(m0 +m1 +m2) − 3β =
= 6λβ − 3β < 6ωiβ − 3β ≤ 6ω2β − 3β for i = 2,3.
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by (4.80). This gives a contradiction and finishes the proof since 6ω2β − 3β ≤ 1. Indeed, for

λ < ω2, if 0 < β ≤ 1
3
, then

6ω2β − 3β ≤ 6β − 3β = 3β ≤ 1.

If 1
3
≤ β ≤ 3

4
, then

6ω2β − 3β = 6(1 + 2β)
5β

β − 3β = 6

5
− 3β

5
< 1.

If 3
4
≤ β ≤ 1, then

6ω1β − 3β = 3 − 3β ≤ 3 − 9

4
< 1.

Finally, suppose λ < ω3, if 0 < β ≤ 1
3
, then 6ω3β − 3β ≤ 6β − 3β = 3β ≤ 1. If 1

3
≤ β ≤ 1, then

6ω3β − 3β = 6(1+β)
4β

β − 3β = 3
2
− 3β

2
≤ 1.

Proof of Claim 4.6.3. Suppose (S, (1 − β)C + λβD) is not log canonical at a pseudo-Eckardt

point q0 ∈ C. Then λ < ω3 and by Lemma 3.1.14 we may assume that q0 = E1 ∩ L12. Since E1

and L12 are lines passing through p, then E1, L12 ⊆ Supp(D), by Lemma 2.3.9 (i). For instance,

if E1 /⊂ Supp(D), then

1 = E1 ⋅D ≥ multq0D > 1 − (1 − β)
λβ

= 1

λ
> 1.

Hence, we may write D = aE1 + bL12 +Ω where a, b > 0 and E1, L /⊆ Supp(Ω). Let xi = multqiΩ
i

and mi = multqiDi. Observe that m0 = a + b + x0. Let A be the strict transform of a general

conic in P2 passing through p1, p3 such that q ∈ A. Since there is a pencil of such conics, we

can choose A such that A /⊂ D. Observe that A ∼ π∗(OP2(2)) −E1 −E3. Intersecting with D

we get the following inequalities:

4 = A ⋅D ≥ a + b, (4.81)

1 = E1 ⋅D ≥ −a + b + x0, (4.82)

1 = L12 ⋅D ≥ a − b + x0. (4.83)

In particular, adding (4.82) and (4.83) we obtain

1 ≥ x0. (4.84)

Now we may apply Theorem 2.3.11 to conclude that either

2(1 − λβa) < E1 ⋅ (λβΩ + (1 − β)C)

holds or

2(1 − λβb) < L12 ⋅ (λβΩ + (1 − β)C)

holds. Since the roles of E1 and L12 in this problem are symmetric, it is enough to disprove

the latter equation. Indeed, if it holds, then

2(1 − λβa) < L12 ⋅ (λβΩ + (1 − β)C) = λβ(1 − a + b) + (1 − β).

Hence, by (4.81)

1 + β < λβ(a + b) < 4ω3β.
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But then
1 + β
4β

< ω3 = min{1,
1 + β
4β

} ≤ 1 + β
4β

,

which is absurd.

In the rest of this section we will prove Claim 4.6.4 by case analysis, depending on the

position of q0.

Lemma 4.6.5. If q0 does not belong to any (−1)-curve, then

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical only at q4 = C4 ∩ F4 for λ < ω1.

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical only at q4 = C4 ∩ F4 for λ < ω1.

Proof. Fix a model π∶S → P2 for S. We will follow the notation at the beginning of this section.

Since q0 lies in no (−1)-curve and all (−1)-curves have degree 1, we may define irreducible conics

Li ∈ ∣π∗(OP2(1)) −Ei∣ with q0 ∈ Li for i = 1,2,3. (4.85)

Such curves are unique and they correspond to the strict transform of the unique line in P2

passing through π(q0) and pi. Since there is no curve of degree 1 through q0 and the point

q0 ∈ Li, then Li is irreducible. Observe that L2
i = 0 and (−KS) ⋅Li = 2. Furthermore

L1 +L2 +L3 ∼ −KS .

By Lemma A.3.2 the pair

(S, (1 − β)C + λβ(L1 +L2 +L3))

is log canonical. Therefore we may assume by Lemma 2.3.8 that there is Li /⊆ Supp(D). Without

loss of generality assume that Li = L1. Let m0 = multqD = multq0D
0.

2 =D ⋅L1 ≥m0 (4.86)

and therefore

λβm0 < ωiβm0 ≤ ω1βm0 ≤ 1, (4.87)

since ω1β ≤ 1
2
. Hence, by Theorem 2.3.10 (i) with i = 1, we have that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1. Observe (4.87) is a necessary condition for Theorem 2.3.10

(ii)-(iv) whenever i ≥ 2. We will assume this condition fromnow onwards. Also, by Theorem

2.3.10 (ii) when i = 1 we conclude that t1 = F1 ∩C1 = q1. But then since

λβm0 − β < λβm0 < 1,
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by part (i) of Theorem 2.3.10 when i = 2 we obtain that

(S2, (1 − β)C1 + λβD1 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2) (4.88)

is not log canonical at some t2 ∈ F2. Observe from (4.85) that L1
i ⋅ L1

j = 0 for 1 ≤ i < j ≤ 3.

Therefore these curves are disjoint. We distinguish 3 distinct cases:

(1) q1 = L1
1 ∩ F1,

(2) q1 ∈ (L1
2 ∪L1

3) ∩ F1,

(3) q1 ∈ F1 ∖ (L1
1 ∪L1

2 ∪L1
3).

We will analyse each case separately.

Case (1): q1 = L1
1 ∩ F1.

Since L1 /⊆ Supp(D) and q1 ∈ L1
1, then

2 = L1 ⋅D ≥m0 +m1. (4.89)

This implies

λβ(m0 +m1) − β ≤ λβ(m0 +m1) ≤ 2ω1β ≤ 1,

since ωβ ≤ 1
2
. Using the above inequality, Theorem 2.3.10 part (iii) with i = 2 implies t2 =

F2 ∩C2 = q2 and part (i) when i = 3 implies the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. Then (4.86) and (4.89) imply

λβ(m0 +m1 +m2) − 2β < ω1β(m0 +m1 +m0) − 2β = 4ω1β − 2β ≤ 1 (4.90)

since mj ≤m0 for all j ≥ 0. Indeed, if 0 < β ≤ 1
2
, then

4ω1β − 2β ≤ 4β − 2β = 2β ≤ 1

and if 1
2
≤ β ≤ 1, then

4ω1β − 2β ≤ 2 − 2β ≤ 2 − 1 ≤ 1.

Hence, applying (4.90) to Theorem 2.3.10 (iii) with i = 3 gives us that t3 = F3 ∩C3 = q3. Since

λβ(m0 +m1 +m2) − 3β < λβ(m0 +m1 +m2) − 2β < 1,

by Theorem 2.3.10 (i) with i = 4, we conclude that

(S4, (1−β)C4 +λβD4 +(λβ(m0 +m1 +m2)−3β)F 4
3 +(λβ(m0 +m1 +m2 +m3)−4β)F4) (4.91)

is not log canonical at some t4 ∈ F4. We use (4.89) to show that

λβ(m0 +m1 +m2 +m3) − 3β ≤ 4λβ − 3β ≤ 4ω1β − 3β ≤ 1 (4.92)
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holds. Indeed for 0 < β ≤ 1
2

we have

4ω1β − 3β ≤ 4β − 3β = β ≤ 1

2
< 1,

while for 1
2
≤ β ≤ 1 we have

4ω1β − 3β ≤ 2 − 3β ≤ 1

2
< 1.

Now we may use (4.92) in Theorem 2.3.10 (iii) with i = 4 to prove that pair (4.91) is not log

canonical only at t4 = F4 ∩C4 = q4, which implies the claim in case (1).

Case (2): q1 ∈ (L1
2 ∪L1

3) ∩ F1.

If q1 ∈ (L1
2∪L1

3)∩F1, we may assume without loss of generality that q1 = L1
2∩F1 and q1 /∈ L1

3.

We may write D = aL2+Ω where L1, L2 /⊆ Supp(Ω) and a ≥ 0. Let xi = multqiΩ
i for i ≥ 0. Then

m0 = a + x0,m1 = a + x1,mi = xi for i ≥ 2.

Since L2 ⋅L1 = 1 and (L2)2 = 0, then

2 =D ⋅L1 ≥ a + x0 =m0, (4.93)

2 =D ⋅L2 ≥ x0 + x1. (4.94)

The pair (S, (1 − β)C + λβ(L13 + 2L2 + E2)) is log canonical by Lemma A.3.1. Therefore by

Lemma 2.3.8, either L = L13 /⊂ Supp(D) or L = E2 /⊂ Supp(D). In both cases

1 =D ⋅L ≥ a. (4.95)

From (4.93) we obtain

λβ(2m0) − 2β ≤ 4ω1β − 2β ≤ 1 (4.96)

where the last inequality follows from the last inequality in (4.90). By Theorem 2.3.10 (iv)

with i = 2, the pair (4.88) is not log canonical at t2 = F2 ∩C2 = q2. Since λβ(m0 +m1) − 2β ≤
2λβm0 − 2β ≤ 1, then Theorem 2.3.10 (i) with i = 3 implies the pair

(S3, (1 − β)C3 + λβ(aL3
2 +Ω3) + (λβ(m0 +m1) − 2β)F 3

2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. Observe that

λβ(m0 +m1 +m2) − 3β < ω1β(2a + x0 + x1 + x2) − 3β ≤ 1,

by (4.93), (4.94) and (4.95). In particular the point t3 is isolated. The last inequality follows

from case analysis. Indeed, if 0 < β ≤ 1
2
, then 5ω1β − 3β = 2β ≤ 1 while if 1

2
≤ β ≤ 1, then

5ω1β − 3β = 5
2
− 3β ≤ 1.

Suppose t3 /∈ F 3
2 ∪C3. Then the pair

(S3, λβ(aL3
2 +Ω3) + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at t3. But then, applying Lemma 2.3.9 (iii) with F3 we obtain that

1 < λβ(aL3
2 +Ω3) ⋅ F3 < ω1βx2 ≤ 1
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by (4.94). This is absurd.

Suppose t3 = F 3
2 ∩ F3. Since F3 ∩L3

2 = F 3
2 ∩C3 = ∅, the pair

(S3, λβ(Ω3) + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at t3 ∈ F3. By applying Lemma 2.3.9 (iii) with F 3
2 we obtain

1 < (λβ(Ω3) + (λβ(m0 +m1 +m2) − 3β)F3) ⋅ F 3
2

= λβ(x1 − x2 + a + x0 + a + x1 + x2) − 3β

< 5ω1β − 3β ≤ 1

by (4.93), (4.94) and (4.95), giving a contradiction.

Hence we conclude that t3 = F3 ∩C3 = q3. Moreover, since λβ(m0 +m1 +m2)−3β ≤ 1, as we

have seen above, we apply Theorem 2.3.10 (i) with i = 4, to show that

(S4, (1−β)C4 +λβD4 +(λβ(m0 +m1 +m2)− 3β)F3 +(λβ(m0 +m1 +m2 +m3)− 4β)F4) (4.97)

is not log canonical at some t4 ∈ F4. Observe that

λβ(m0 +m1 + 2m2) − 4β ≤ λβ(2a + x0 + x1 + 2x2) − 4β ≤
≤(λβ(2a + 2x0 + x0 + x1) − 4β ≤ 6λβ − 4β < 6ω1β − 4β ≤ 1

by (4.94) and (4.93). The last inequality follows from case analysis. If 0 < β ≤ 1
2
, then

6ω1β − 4β = 6β − 4β = 2β ≤ 1. If 1
2
≤ β ≤ 1, then 6ω1β − 4β ≤ 3 − 4β ≤ 3 − 2 = 1. Hence

t4 = C4 ∩F4 = q4 and the pair (4.97) is not log canonical only at q4 = F4 ∩C4, which implies the

claim in case (2).

Case (3): q1 /∈ (L1
1 ∪L1

2 ∪L1
3) ∩ F1.

Let H1 ∈ ∣f∗1 (π∗(OP2(1))) − F1∣ be the unique member of this linear system which passes

through q1. There are two ways to see that such H1 exists. One of them is to realise that S1

is a del Pezzo surface of degree 5 and let H1 be the strict transform of a line in P2 under the

model π ○ f1. The other way to see H1 exists is to notice that −KS1 ⋅H1 = 2 and (H1)2 = 0,

pa(H1) = 0 and apply Proposition 3.1.18 to its complete linear system, to show that is a pencil.

H1 is irreducible. Indeed, if H1 = A +B then A and B are curves of del Pezzo degree 1 and

q1 ∈ A. By assumption, the only curve of degree 1 is F1. But then B ∼ π∗(OP2(1)) − 2F1 and

there is no such line in S1 by Lemma 3.1.13. Let H = H0 ∶= (f1)∗(H1). Note that H1 is the

strict transform of H and q0 ∈H. Let

G1 ∈ ∣f∗1 (π∗(OP2(2))) − F1 −E1 −E2 −E3∣

be the unique member of this linear system which passes through q1. There are two ways to

see that such G1 exists. One of them is to realise that S1 is a del Pezzo surface of degree 5

and let G1 be the strict transform of a conic in P2 passing through p1, p2, p3 under the model

π ○ f1. The other way to see that G1 exists is to notice that −KS1 ⋅ G1 = 2 and (G1)2 = 0,

pa(G1) = 0 and apply Proposition 3.1.18 to its complete linear system, to show that is a pencil.

G1 is irreducible. Indeed, if G1 = A + B then A and B are curves of del Pezzo degree 1 and

q1 ∈ A. By assumption, the only curve of degree 1 is F1. But then B ∼ π∗(OP2(1)) − 2F1 and

114



there is no such line in S1 by Lemma 3.1.13. Let G = G0 ∶= (f1)∗(G1). Note that G1 is the

strict transform of G and q0 ∈ G.

Observe that G +H ∼ −KS . By Lemma A.3.3 the pair

(S, (1 − β)C + λβ(G +H)) (4.98)

is log canonical. Therefore we may assume by Lemma 2.3.8 that either G /⊆ Supp(D) or

H /⊆ Supp(D). In any case there is an irreducible curve Q in S with del Pezzo degree 3 such

that q0 ∈ Q, q1 ∈ Q1 and Q /⊂ Supp(D). Recall from (4.86)

m0 ≤ 2. (4.99)

Intersecting Q and D:

3 = Q ⋅D ≥m0 +m1. (4.100)

This gives us:

λβ(2m0) − 2β < 4ω1β − 2β ≤ 1 (4.101)

where the last inequality follows from the last inequality in (4.90). By Theorem 2.3.10 (iv) with

i = 2, the pair (4.88) is not log canonical at q2 = F2 ∩C2.

Since

λβ(m0 +m1) − 2β < 4ω1βm0 − 2β ≤ 1,

by (4.87) and (4.90), then Theorem 2.3.10 (i) with i = 3 implies the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. Moreover, given that m1 ≤m0, (4.99) and (4.100) give us

λβ(m0 + 2m1) − 3β < 5ω1β − 3β ≤ 1,

where the last inequality follows by case analysis: if 0 < β ≤ 1
2
, then 5ω1β − 3β = 2β ≤ 1 and if

1
2
≤ β ≤ 1, then 5ω1β − 3β = 5

2
− 3β ≤ 1.

Hence we may apply Lemma (iv) with i = 3 to conclude that t3 = F3 ∩C3 = q3. Moreover

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 + 2m1) − 3β ≤ 1,

which we use to apply Theorem 2.3.10 (i) with i = 4, to show that

(S4, (1−β)C4 +λβD4 +(λβ(m0 +m1 +m2)−3β)F3 +(λβ(m0 +m1 +m2 +m3)−4β)F4) (4.102)

is not log canonical at some t4 ∈ F4. Since

λβ(m0 +m1 + 2m2) − 4β ≤ 2λβ(m0 +m1) − 4β < 6ω1β − 4β ≤ 1

by (4.100). The last inequality follows from case analysis. If 0 < β ≤ 1
2
, then 6ω1β − 4β =

6β − 4β = 2β ≤ 1. If 1
2
≤ β ≤ 1, then 6ω1β − 4β ≤ 3 − 4β ≤ 3 − 2 = 1. Hence t4 = C4 ∩ F4 = q4 and

the pair above is not log canonical only at q4 = F4 ∩ C4, which implies the claim in case (3),

finishing the proof of this lemma.
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Lemma 4.6.6. If q0 belongs precisely to one (−1)-curve and λ < ω1, then

(S4, (1 − β)C4 + λβD4 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical only at q4 = C4 ∩ F4.

If q0 belongs precisely to one (−1)-curve and λ < ω2, then

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical only at q3 = C3 ∩ F3.

Proof. We will follow the notation at the beginning of this section. Recall ω2 ≤ ω1. By Lemma

3.1.14 we may choose a model π∶S → P2 for S such that q0 ∈ E1 and q0 lies in no other line.

Let Lq be the strict transform of the unique line of P2 through p1 such that q0 ∈ Lq, i.e.

Lq ∈ ∣π∗(OP2(1)) −E1∣.

Since E1 is the only line containing q0, then Lq is irreducible. Otherwise there would be a line

L ⊂ S with class L ∼ π∗(OP2(1)) − 2E1 such that E1 +L ∼ Lq, which is not possible by Lemma

3.1.13. Observe that (Lq)2 = 0 and −KS ⋅Lq = 2.

Let S1 be the surface resulting from the blow-up of q0. Let F1 be the exceptional divisor.

Let q1 = F1 ∩ C1. Let Cq be the strict transform of the unique conic in P2 through p1, p2, p3

such that q0 ∈ Cq and q1 ∈ C1
q ⊂ S1. Therefore

Cq ∈ ∣π∗(OP2(2)) −E1 −E2 −E3∣.

Observe that (Cq)2 = 1 and −KS ⋅Cq = 3.

Case (A): Suppose Cq is reducible. Then it decomposes in a line and a (possibly reducible)

conic. One of these curves M ⊂ Supp(Cq) has q0 ∈M and q1 ∈M1 where M1 ⊂ S1 is its strict

transform in S1. Since q1 ∈ C1 by construction and C1 ⋅E1
1 = C ⋅E1 − 1 = 0, then q1 /∈ E1

1 and we

conclude M ≠ E1. But E1 is the only line through q0, so M is an irreducible conic, and in fact

M = Lq, since there is no other conic through q0. Observe that by construction we are in the

situation in which (Lq ⋅C)∣q0 = 2. Hence λ < ω2. In particular q1 ∈ L1
q but q2 /∈ L2

q, since q2 ∈ C2

and C2 ⋅ L2
q = C ⋅ Lq − 2 = 0. Let L be the unique line such that Lq + L ∼ Cq. Then it is clear

that L = L23 ∼ π∗(OP2(1))−E2 −E3. Let B = 2Lq +L23 +E1 ∼ −KS . By Lemma A.3.5, the pair

(S, (1 − β)C + λβB)

is log canonical. Hence, by Lemma 2.3.8 we may assume there is an irreducible curve Z ⊆
Supp(B) such that Z /⊆ Supp(D). Notice that E1 ⊂ Supp(D), since otherwise we get the

following contradiction

1 ≥ 1 − β + λβ = ((1 − β)C + λβD) ⋅E1 ≥ multq0((1 − β)C + λβD)) > 1

where we use Lemma 2.3.9 (i). Therefore either

(A1) Lq /⊆ Supp(D), or

(A2) L23 /⊆ Supp(D) and Lq ⊆ Supp(D).
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Case (A1): Lq /⊆ Supp(D).
We may write D = aE1 +Ω where Lq,E1, /⊆ Supp(Ω). Let xi = multqiΩ

i. Then m0 = a + x0.

Since q1 ∈ C1 but E1 ⋅C = 1, then E1
1 ⋅C1 = 0 so q1 /∈ E1. Hence m1 = x1.

We bound the multiplicity of D:

1 =D ⋅E1 ≥ −a + x0 (4.103)

2 =D ⋅Lq ≥ a + x0 + x1 =m0 +m1 (4.104)

In particular

λβm0 − β ≤ λβ(m0 +m1) − β ≤ 2λβ − β ≤ 2ω2β − β ≤ 2ω1β − β ≤ 1 − β ≤ 1. (4.105)

where we use (4.104).

Hence, by Theorem 2.3.10 (i) with i = 1, we have that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1. Observe by inspection in (4.105) that λβ(m0 +m1)−β ≤ 1,

which is a necessary condition for Theorem 2.3.10 (ii)-(iv) whenever i ≥ 2. Therefore, by

Theorem 2.3.10 (ii) when i = 1 we conclude that t1 = F1 ∩ C1 = q1. But then part (iii) of

Theorem 2.3.10 when i = 2 gives that

(S2, (1 − β)C1 + λβD1 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2) (4.106)

is not log canonical only at q2 = F2 ∩C2.

From inequality (4.105) we deduce

λβ(m0 +m1) − 2β ≤ λβ(m0 +m1) − β ≤ 1

which is the condition in Theorem 2.3.10 (i) when i = 3. Therefore the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3.

Using (4.104) we obtain

λβ(m0 + 2m1) − 3β < 4ω2β − 3β ≤ 4ω1β − 3β ≤ 1.

The last inequality follows from case analysis: 0 < β ≤ 1
2

we have 4ω1β − 3β = 4β − 3β = β < 1.

For 1
2
≤ β ≤ 1, 4ω1β − 3β = 2 − 3β < 1. Hence, by Theorem 2.3.10 (iv) with i = 3 we conclude

t3 = F3 ∩C3 = q3, which implies the claim in case (A1).

Case (A2): Lq ⊆ Supp(D) and L23 /⊆ Supp(D).
We may write D = aE1 + bLq + Ω where Lq,E1, /⊆ Supp(Ω). Let xi = multqiΩ

i. Then

m0 = a + b + x0.

Observe that B = Lq +L12 +L13 + 2E1 ∼ −KS . By Lemma A.3.6, the pair

(S, (1 − β)C + λβB)
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is log canonical for λ < ω1. Therefore, using Lemma 2.3.8, we may assume there is one irreducible

component F ⊆ Supp(B) such that F /⊆ Supp(D). Since E1 ⊂ Supp(B) and Lp ⊂ Supp(B), we

have that either F = L12 or F = L13. In any case 1 = F ⋅D ≥ a.

We bound the multiplicities of D:

1 =D ⋅ F ≥ a (4.107)

1 =D ⋅E1 ≥ −a + b + x0 (4.108)

1 =D ⋅L23 ≥ b (4.109)

Using (4.107) and (4.108) it is immediate to obtain:

λβm0 − β = λβ(a + b + x0 + x1) − β ≤ ω2β(2 + 1) − β ≤ 3ω1β − β ≤ 1. (4.110)

Indeed, if 0 < β ≤ 1
2
, then 3ω1β − β = 2β ≤ 1, whereas if 1

2
≤ β ≤ 1, then 3ω1β − β ≤ 3

2
− β ≤ 1.

By Theorem 2.3.10 (i) with i = 1, we have that the pair

(S1, (1 − β)C1 + λβ(aE1
1 + bL1

q +Ω1) + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1 and is log canonical in codimension 1.

Since Lq ⋅E1 = C ⋅E1 = 1, then L1
q ∩E1 = ∅ and C1 ∩E1 = ∅. Suppose t1 /∈ (E1

1 ∪L1
q). Then

t1 /∈ C1, and the pair

(S1, λβ(Ω1) + (λβm0 − β)F1)

is not log canonical at t1. Applying Lemma 2.3.9 (i) we obtain

1 < multt1(λβΩ1 + (λβm0 − β)F1) = λβx1 + λβ(a + b + x0) − β ≤ 3λβ − β < 3ω1β − β ≤ 1,

which is a contradiction, where the second inequality follows from (4.107) and (4.108). The last

inequality follows by case analysis: if 0 < β ≤ 1
2
, then 3ω1β − β = 2β ≤ 1 and if 1

2
≤ β ≤ 1, then

3ω1β − β = 3
2
− β ≤ 1. Therefore t1 ∈ ((C1 ∩L1

q) ∪ (E1
1)) ∩ F1. If t1 = E1

1 ∩ F1, then t1 ≠ C1 ∩L1
q

and the pair

(S1, λβ(aE1
1 +Ω1) + (λβm0 − β)F1)

is not log canonical at t1. Applying Lemma 2.3.9 (iii) with E1
1 , we obtain

1 < E1
1 ⋅ (λβΩ1 + (λβm0 − β)F1) = λβ(1 + 2a) − β ≤ 3λβ − β ≤ 1,

applying (4.107). Therefore the pair

(S1, (1 − β)C1 + λβ(bL1
q +Ω1) + (λβm0 − β)F1)

is not log canonical at t1 = C1 ∩L1
q ∩ F1.

Since t1 ∈ C1 but E1 ⋅ C = 1, then E1
1 ⋅ C1 = 0 so t1 /∈ E1. Hence m1 = b + x1, since t1 ∈ L1

q,

given that C1 ⋅L1
q = 1. We conclude mi = xi for i ≥ 2. Moreover

2 =D ⋅Lq ≥ a + x0 + x1 (4.111)
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Applying Lemma 2.3.5 the pair

(S2, (1 − β)C2 + λβ(bL2
q +Ω2) + (λβm0 − β)F 2

1 + (λβ(m0 +m1) − 2β)F2) (4.112)

is not log canonical at some (possibly all) t2 ∈ F2. By (4.109) and (4.111) inequality

λβ(m0 +m1) − 2β = λβ(a + 2b + x0 + x1) − 2β ≤ 4λβ − 2β < 4ωiβ − 2β ≤ 4ω1β − 2β ≤ 1 (4.113)

holds. The last inequality follows by case analysis. If 0 < β ≤ 1
2
, then 4ω1β − 2β = 2β ≤ 1. If

1
2
≤ β ≤ 1, then 4ω1β − 2β ≤ 2 − 2β ≤ 1.

Therefore, by Lemma 2.3.9 (ii), the pair (4.112) is log canonical in codimension 1, and as a

result t2 is isolated. Observe that L2
q ⋅C2 = (F 2

1 ) ⋅C2 = L2
q ⋅C2 = 0. Therefore we have essentially

4 distinct situations. Either

(i) the point t2 /∈ F2 ∩ (L2
q ∪ F 2

1 ∪C2), or

(ii) the point t2 = F2 ∩L2
q, or

(iii) the point t2 = F2 ∩ F 2
1 , or

(iv) the point t2 = F2 ∩C2 = q2.

Case (i): the pair

(S2, λβ(Ω2) + (λβ(m0 +m1) − 2β)F2)

is not log canonical. But then, by Lemma 2.3.9 (i), and adding (4.107), (4.108), (4.111), (4.109)

we obtain a contradiction:

1 < multt2(λβ(Ω2) + (λβ(m0 +m1) − 2β)F2) = λβ(m0 +m1 + x2) − 2β (4.114)

= λβ(a + 2b + x0 + x1 + x2) − 2β ≤ λβ(a + 2b + 2x0 + x1) − 2β ≤
≤ 5λβ − 2β < 5ωiβ − 2β ≤ 5ω2β − 2β ≤ 1.

The last inequality follows by case analysis on β. If 0 < β ≤ 1
3
, then 5ω1β − 2β = 3β ≤ 1. If

1
3
≤ β ≤ 3

4
, then 5ω1β − 2β = 1. If 3

4
≤ β ≤ 1, then 5ω1β − 2β = 5

2
− 2β ≤ 1.

Case (ii): t2 = F2 ∩L2
q. Then the pair

(S2, λβ(bL2
q +Ω2) + (λβ(m0 +m1) − 2β)F2)

is not log canonical at t2. It follows from (4.107) and (4.108) that b + x2 ≤ b + x0 ≤ 2. Since

λβ < 1
2
, applying Lemma 2.3.9 (iii) to our pair, we obtain a contradiction:

1 < λβ(bL2
q +Ω2) ⋅ F2 = λβ(b + x2) ≤ 2ω1β ≤ 1.

Case (iii): t2 = F2 ∩ F 2
1 . Then the pair

(S2, λβ(Ω2) + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2)
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is not log canonical at t2. Applying Lemma 2.3.9 (iii) to this pair with F2, then

1 <λβ(Ω2) + (λβm0 − β)F 2
1 ) ⋅ F2

≤λβ(a + b + x0 + x1) − β <
≤3ω1β − β ≤ 1,

using (4.111) and (4.109). The last inequality is easy to see case by case: if 0 < β ≤ 1
2
, then

3ω1β − β = 2β ≤ 1 and if 1
2
≤ β ≤ 1, then 3ω1β − β = 3

2
− β ≤ 1.

Therefore the pair

(S2, (1 − β)C2 + λβ(Ω2) + (λβ(m0 +m1) − 2β)F2)

is not log canonical at t2 = F2 ∩C2 = q2 (which is precisely case (iv) above). By Lemma 2.3.5,

the pair

(S3, (1 − β)C3 + λβ(Ω3) + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. If λβ(m0 +m1 +m2)−3β ≤ 1, then such t3 is isolated. This

is indeed the case:

λβ(m0 +m1 +m2) − 3β = λβ(m0 +m1 + x2) − 3β ≤ λβ(m0 +m1 + x2) − 2β ≤ 1

as seen in (4.114). Observe that since F2 ⋅ C2 = 1, then F 3
2 ∩ C3 = ∅. The point t3 can be in

essentially 3 different positions: t3 /∈ (F 3
2 ∪C3), t3 = F 3

2 ∩ F3 or t3 = C3 ∩ F3 = q3.

If t3 /∈ (F 3
2 ∪C3) then the pair

(S3, λβ(Ω3) + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at t3. By Lemma 2.3.9 (iii) applied with F3 we obtain a contradiction:

1 < λβΩ ⋅ F3 < ω1βx3 ≤
1

2
(a + x0 + x1) ≤ 1,

by (4.111).

If t3 = (F 3
2 ∪ F3) then the pair

(S3, λβ(Ω3) + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at t3. By Lemma 2.3.9 (iii) applied with F 3
2 we obtain a contradiction:

1 <F 3
2 ⋅ (λβ(Ω3) + (λβ(m0 +m1 +m2) − 3β)F3) ≤

≤λβ(x1 − x2 +m0 +m1 +m2) − 3β

=λβ(a + 2b + x0 + 2x1) − 3β

<5ω2β − 3β ≤ 5ω2β − 2β ≤ 1,

where we add (4.107), (4.108), (4.111) and (4.109). The last inequality follows from (4.114).
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Hence t3 = C3 ∩ F3 = q3, but that implies the pair

(S3, (1 − β)C3 + λβ(Ω3) + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical only at q3, finishing the proof in case (A2).

Case (B): We may assume the curve Cq is irreducible, where Cq ∼ π∗(OP2(2))−E1−E2−E3

with q0 ∈ Cq and q1 ∈ C1
q . Recall λ < ωi ≤ ω1 and Lq ∼ π∗(OP2(1))−E1 is irreducible with q0 ∈ E1.

Notice that

B ∶= E1 +Lq +Cq ∼ −KS .

By Lemma A.3.4 the pair

(S, (1 − β)C + λβB)

is log canonical. Hence, by Lemma 2.3.8 we may assume there is an irreducible curve Z ⊆
Supp(B) such that Z /⊆ Supp(D). Notice that E1 ⊂ Supp(D), since otherwise we get the

following contradiction

1 ≥ 1 − β + λβ = ((1 − β)C + λβD) ⋅E1 ≥ multq0((1 − β)C + λβD)) > 1

where we use Lemma 2.3.9 (i). Therefore, by Lemma 2.3.8, either

(B1) Lq /⊆ Supp(D), or

(B2) Cq /⊆ Supp(D),

since E1 ⊆ Supp(D).
Case (B1): Lq /⊆ Supp(D).
We may write D = aE1 + bCq + Ω where Lq,E1,Cq /⊆ Supp(Ω). Let x0 = multq0Ω. Then

m0 = a + b + x0. We bound the multiplicity of D:

1 =D ⋅E1 ≥ −a + b + x0 (4.115)

2 =D ⋅Lq ≥ a + b + x0 =m0 (4.116)

In particular

λβm0 ≤ ω1βm0 ≤ 1. (4.117)

This is a necessary hypothesis for Theorem 2.3.10 (ii)-(iv) for i ≥ 2 and we will assume it from

now onwards.

Hence, by Theorem 2.3.10 (i) with i = 1, we have that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1. Observe (4.117) is a necessary condition for Theorem

2.3.10 (ii)-(iv) whenever i ≥ 2. Also, by Theorem 2.3.10 (ii) when i = 1 we conclude that

t1 = F1 ∩C1 = q1. But then part (i) of Theorem 2.3.10 when i = 2 gives that

(S2, (1 − β)C1 + λβD1 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2) (4.118)

is not log canonical at some t2 ∈ F2.
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If 0 < β ≤ 1
2
, then 4ω1β − 2β = 4β − 2β = 2β ≤ 1. If 1

2
≤ β ≤ 1 then 4ω1β − 2β = 2 − 2β ≤ 1.

Therefore we have proven

2λβm0 − 2β ≤ 4λβ − 2β ≤ 4ω1β − 2β ≤ 1, (4.119)

by means of (4.116).

Notice that by (4.116)

λβ(2m0) − 2β ≤ 4λβ − 2β < 4ω1β − 2β ≤ 1.

Indeed, if 0 < β ≤ 1
2
, then 4ω1β − 2β = 2β ≤ 1 while if 1

2
≤ β ≤ 1, then 4ω1β − 2β = 2 − 2β ≤ 1.

Using this, Theorem 2.3.10 (iv) with i = 2 implies t2 = F2 ∩C2 = q2.

Let xi = multqiΩ
i. Since q1 ∈ C1 but E1 ⋅ C = 1, then E1

1 ⋅ C1 = 0 so q1 /∈ E1. Hence

m1 = b + x1. Observe that since q1 ∈ C1
q ∩C1, then 3 = Cq ⋅C ≥ (Cq ⋅C)∣q0 ≥ 2. If (Cq ⋅C)∣q0 = 2,

then C3 ⋅ (Cq)2 = 0 so q2 /∈ C2
q and then m2 = x2. Otherwise q2 ∈ C2

q , C2
q ⋅C2 = 1 and m2 = b+x2.

In both cases mi = xi for i ≥ 3.

3 =D ⋅Cq ≥ a + b + x0 + x1 =m0 + x1. (4.120)

Since

λβ(m0 +m1) − 2β ≤ λβ(2m0) − 2β ≤ 1

we can apply Theorem 2.3.10 (i) when i = 3 and conclude that the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3.

Observe that using (4.115) and (4.116) the inequality

m0 + 2m1 ≤ a + 3b + x0 + x1 ≤ a + 3b + 3x0 = (2a + 2b + 2x0) + (−a + b + x0) ≤ 4 + 1 = 5,

holds. Therefore

λβ(m0 + 2m1) − 3β < 5ω1β − 3β ≤ 1

since for 0 < β ≤ 1
2
, we have 5ω1β−3β = 2β ≤ 1, and for 1

2
≤ β ≤ 1 we have 5ω1β−3β ≤ 5

2
−3β ≤ 1.

Hence, by Theorem 2.3.10 (iii) with i = 3 we conclude t3 = F3 ∩C3 = q3. Moreover, since

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 + 2m1) − 3β ≤ 1

we can apply Theorem 2.3.10 (i) with i = 4, and show that

(S4, (1−β)C4+λβD4+(λβ(m0+m1+m2)−3β)F 4
3 +(λβ(m0+m1+m2+m3)−4β)F4) (4.121)

is not log canonical at some t4 ∈ F4.

Suppose (Cq ⋅C)∣q0 = 2. Then m2 = x2. and using (4.120) and (4.116) we obtain

m0 +m1 + 2m2 ≤ 2b + a + x0 + x1 + 2x2 ≤ 3 + 2x2 + a − a ≤ 5 + x2 − a ≤ 6.
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Therefore

λβ(m0 +m1 + 2m2) − 4β ≤ 6λβ − 4β < 6ω1β − 4β ≤ 1

since for 0 < β ≤ 1
2

6ω1β − 4β = 2β ≤ 1 and for 1
2
≤ β ≤ 1 we have 6ω1β − 4β = 3− 4β ≤ 1. Now we

can use Theorem 2.3.10 (iii) with i = 4 to prove that pair (4.121) is not log canonical only at

t4 = F4 ∩C4 = q4, which implies the claim in case (B1) when (Cq ⋅C)∣q0 = 2.

Now suppose (Cq ⋅C)∣q0 = 3. Then

λβ(m0 +m1 +m2 +m3) − 4β ≤ 1. (4.122)

Indeed, notice that

m0 +m1 +m2 +m3 = a + 3b + x0 + x1 + x2 + x3 ≤ a + 3b + x0 + x1 + 2x2 (4.123)

≤ 3 + 2b + 2x1 − a + a
≤ 3 + 1 + a + b + x0

≤ 6,

by (4.120), (4.115) and (4.116) in each step. Now, if 0 < β ≤ 1
2
, then 6ω1β − 4β = 2β ≤ 1 and

1
2
≤ β ≤ 1, then 6ω1β − 4β = 3 − 4β ≤ 1. Inequality (4.122) is proven. In particular (4.121) is log

canonical in codimension 1, i.e. t4 is isolated.

Since F4 has empty intersection with Cq and E1, if t4 ≠ C4 ∩ F4 = q4, then the pair

(S4, λβΩ4 + (λβ(m0 +m1 +m2) − 3β)F 4
3 + (λβ(m0 +m1 +m2 +m3) − 4β)F4)

is not log canonical at q4 ∈ F4. Applying Lemma 2.3.9 (iii) to this pair with F 4
3 we obtain a

contradiction:

1 < (λβΩ4 + λβ(m0 +m1 +m2 +m3) − 4β)F4) ⋅ F 4
3

= λβ(x2 − x3 + a + 3b + x0 + x1 + x2 + x3) − 4β

≤ 6ω1β − 4β ≤ 1,

by (4.123) and (4.122), which gives a contradiction. Therefore t4 = C4∩F4 = q4 and the Lemma

is proven in case (B1).

Case (B2): Cq /⊆ Supp(D).

We may write D = aE1 + bLq +Ω where Lq,E1,Cq /⊆ Supp(Ω). Let x0 = multq0Ω.

We bound the multiplicities of D:

1 =D ⋅E1 ≥ −a + b + x0 (4.124)

2 =D ⋅Lq ≥ a + x0. (4.125)

Notice that 3 =D ⋅Cq ≥m0 so

λβm0 − β < 3ω1β − β ≤ 1. (4.126)

For the last inequality, observe that if 0 < β ≤ 1
2
, then 3ω1β −β = 2β ≤ 1, while if 1

2
≤ β ≤ 1, then

3ω1β − β = 3
2
− β ≤ 1.
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Hence, by Theorem 2.3.10 (i) with i = 1, we have that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1)

is not log canonical at some t1 ∈ F1.

Since Lq ⋅E1 = 1, then L1
q ∩E1

1 = ∅. Suppose t1 ≠ C1 ∩F1 = q1. If t1 ≠ L1
q ∩F1, then the pair

(S1, λβ(aE1
1 +Ω1) + (λβm0 − β)F1)

is not log canonical at t1. By Lemma 2.3.9 (iii) and (4.125)

1 < F1 ⋅ (λβ(aE1 +Ω1) = λβ(a + x0) < 2ω1β ≤ 1,

which is absurd.

If t1 = L1
q ∩ F1, t1 ≠ q1, the pair

(S1, λβ(bL1
q +Ω1) + (λβm0 − β)F1)

is not log canonical at t1. Then, by Lemma 2.3.9 (iii) applied with F1 we get

1 < λβF1(bL1
q +Ω1) < ω1β(b + x0) ≤ 2ω1β ≤ 1,

which is absurd. We have used b + x0 ≤ 2, which follows from adding (4.124) to 3 = D ⋅ C1 ≥
a + b + x0. Therefore t1 = q1 = C1 ∩ F1.

Let xi = multqiΩ
i. Then m0 = a + b + x0. Since E1 ⋅C = E1 ⋅ Lq = E1 ⋅Cq = Lq ⋅Cq = 1, then

E1
1 ⋅C1 = C1 ⋅L1

q = C1
q ⋅L1

q = 0 so q1 /∈ E1, q1 /∈ Lq. Hence mi = xi for i ≥ 1. Then

3 =D ⋅Cq ≥ a + b + x0 + x1 =m0 +m1. (4.127)

Observe that (4.127) and inspection in (4.126) give that λβ(m0 + m1) − β ≤ 1, which is a

necessary condition for Theorem 2.3.10 (ii)-(iv) whenever i ≥ 2. We will assume it from now

on.

Observe that

λβ(m0 +m1) − β ≤ 3ω1β − β ≤ 1 (4.128)

by (4.127) and (4.126). Now we apply Theorem 2.3.10 (iii) when i = 2 to get that

(S2, (1 − β)C1 + λβD1 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2) (4.129)

is not log canonical only at q2 = F2 ∩C2.

From inequality (4.128) we deduce

λβ(m0 +m1) − 2β ≤ λβ(m0 +m1) − β ≤ 1

which is the condition in Theorem 2.3.10 (i) when i = 3. Therefore the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3.
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Using (4.127) and (4.125) we obtain

λβ(m0 + 2m1) − 3β ≤ λβ(3 + 2 − a) − 3β ≤ 5ω1β − 3β ≤ 1.

To prove the last inequality observe that for 0 < β ≤ 1
2

we have 5ω1β − 3β = 5β − 3β ≤ 1. For
1
2
≤ β ≤ 1, 5ω1β − 3β = 5

2
− 3β ≤ 1. Hence, by Theorem 2.3.10 (iv) with i = 3 we conclude

t3 = F3 ∩C3 = q3. Moreover, since

λβ(m0 +m1 +m2) − 3β ≤ λβ(m0 + 2m1) − 3β ≤ 1

we can apply Theorem 2.3.10 (i) with i = 4, and show that

(S4, (1−β)C4+λβD4+(λβ(m0+m1+m2)−3β)F 4
3 +(λβ(m0+m1+m2+m3)−4β)F4) (4.130)

is not log canonical at some t4 ∈ F4.

We use (4.124), (4.127) and (4.125) to show

λβ(m0+m1+2m2)−4β ≤ λβ(3+2x0)−4β ≤ λβ(3−a+b+x0+a+x0)−4β ≤ 6λβ−4β ≤ 6ω1β−4β ≤ 1.

To verify the last inequality observe that for 0 < β ≤ 1
2

we have 6ω1β − 4β = 6β − 4β ≤ 1. For
1
2
≤ β ≤ 1, 6ω1β − 4β = 6

2
− 4β ≤ 1.

Now we can use Theorem 2.3.10 (iv) with i = 4 to prove that the pair (4.130) is not log

canonical only at t4 = F4 ∩C4 = q4, which implies the claim in case (B2).

Lemmas 4.6.5 and 4.6.6 cover all possible q0 ∈ S, proving Claim 4.6.4 and finishing the proof

of Theorem 4.6.2.

4.7 Del Pezzo surface of degree 5

The method for this surface is different than in higher degrees and more similar to the proof of

Theorem 1.2.5 when K2
S = 4. Therefore first we need to find and classify low degree curves in

S in order to construct certain Q-divisors with good properties that we will use in the proof of

Theorem 4.7.9.

4.7.1 Curves of low degree and models of S

Let π∶S → P2 be the blow-up at p1, . . . , p4 ∈ P2 in general position. Let E1, . . . ,E4 be the

exceptional divisors. Recall that −KS ∼ π∗(OP2(3)) −∑4
i=1Ei and E2

i = −1.

Observe Table 4.2. In the first column we have defined certain complete linear systems LS
in S. Let C ∈ LS be any divisor. Its numerical properties (C2,deg(C)) are the same for any

divisor in a given LS and are easy to compute. We list them in the second and third columns

of Table 4.2. Note that, by the genus formula, pa(C) = 0 in all cases.

If degC = 2, then by Proposition 3.1.18, h0(LS) ≥ 2. Take LS ′ ⊂ LS to be the sublinear

system fixing a given point p ∈ S. Then h0(LS ′) ≥ 1 and we can find a curve C ′ ∈ LS with

p ∈ C ′. The notation for each particular C ′ is in the last column of the table.

When the curve C ′ is irreducible, we can see it as the strict transform of an irreducible curve

in P2 via the model π. For instance Lij is the strict transform of the unique line through pi and
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Linear system LS degC C2 Fix p Fix q C ′

∣Ei∣ 1 −1 N N Ei
Lij = ∣π∗(OP2(1)) −Ei −Ej ∣ 1 −1 N N Lij
Bi = ∣π∗(OP2(1)) −Ei∣ 2 0 Y N Bi

A =
RRRRRRRRRRR
π∗(OP2(2)) −

4

∑
j=1

Ej

RRRRRRRRRRR
2 0 Y N A

R = ∣π∗(OP2(1))∣ 3 1 Y Y R

Ri = ∣π∗(OP2(2)) −∑4
j=1
j≠i

Ej∣ 3 1 Y Y Ri

Table 4.2: Catalogue of curves of low degree of the del Pezzo surface of degree 5.

pj . Bi is the strict transform of a line passing through pi and p and A is the strict transform

of a conic through all pj .

If degC = 3, then let σ∶ S̃ → S be the blow-up of a point p ∈ S with exceptional divisor E.

Let LS ′ = {D ∈ LS ∶ p ∈ Supp(D)} and let L̃S ′ = ∣σ∗(LS ′) −E∣. By Proposition 3.1.18

h0(L̃S ′) = h0(LS ′) = h0(LS) − 1 ≥ 2,

so we can choose B ∈ L̃S ′ an effective divisor passing through q. If E /⊂ Supp(B), then let

C ′ = σ∗(B) and B = C̃ ′ ∼ σ∗(C ′) −E where B ⋅E = 1.

Conversely, if E ⊂ Supp(B), let B = A + nE where E /⊂ Supp(A), n ≥ 1 and A is effective.

Then C̃ ′ = A = B − nE ∼ σ∗(C ′) − (n + 1)E for C ′ = σ∗(B) = σ∗(A) and C ′ is singular at p. C ′

is reducible, since otherwise pa(C̃ ′) < pa(C ′) = 0, which is impossible. If LS = R, then denote

C ′ = R. If LS = Ri, then denote C ′ = Ri.
When the curve C ′ is irreducible, we can see it as the strict transform of an irreducible

curve in P2 via the model π. For instance L is the strict transform of the unique line through

π(p) such that its strict transform in S̃ passes through q. Ri is the strict transform of a conic

passing through π(p) and all pj for j ≠ i and such that its strict transform in S̃ contains q.

In order to understand the geometry of S we need to understand which are its curves of

low degree and how they intersect each other. We have seen some of these curves. We want

to show that all the lines in S are the ones described in Table 4.2. Furthermore, we will show

that the conics described in the table are all the conics in S passing through a given point p.

Moreover, since there is more than one model S → P2 to characterise S as a blow-up of P2 in 4

points, we need to show that we can choose a model adequate to our needs.

Lemma 4.7.1. Let S be a non-singular del Pezzo surface of degree 5 and C ′ a curve as in

Table 4.2. Suppose C ′ is irreducible. Then C ′ is smooth.

Proof. Suppose C ′ ≠ Ei. Then π(C ′) is an irreducible curve of degree 1 or 2 in P2. Therefore

π(C ′) is smooth. Since S is just the blow-up of smooth points of P2, if π(C ′) is a smooth curve

of P2, then its strict transform C ′ is a smooth curve in S.

If C ′ = Ei, then C ′ is a line, which is smooth by Lemma 3.1.4.

Lemma 4.7.2. The 10 lines in Table 3.3 are all the lines in S. The intersection of these lines
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are:

Ei ⋅Ej = −δij , Lij ⋅Ei = Lij ⋅Ej = 1,

Lij ⋅Lkl =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1 if i = k and j = l
0 if precisely two subindices are the same

1 if none of the subindices are the same.

Proof. See Lemma 3.1.13.

Lemma 4.7.3. Given a line L ⊂ S, we can choose a model γ∶S → P2 such that L = E1. If

p = L1 ∩L2, the intersection of two lines, we can choose γ such that L1 = E1, L2 = L12.

Proof. We construct γ∶S → P2 by contracting 4 disjoint exceptional curves Fi (i.e. Fi ⋅Fj = 0 if

i ≠ j, −KS ⋅ Fi = 1 and F 2
i = −1 for all i). Let F1 = L.

(i) If F1 = E1, take Fi = Ei, for i = 2,3,4.

(ii) If F1 = L12, take F2 = L13, F3 = L23 and F4 = E4.

Obvious relabelling exhausts all 10 lines in Lemma 4.7.2. By Castelnuovo contractibility crite-

rion [Har77, V.5.7] we can contract each Fi, leaving every other point intact. Th e image of

γ is P2, because the relative minimal model of S, once 4 exceptional curves are contracted, is

unique. For the second part we can assume already L1 = E1 and run this lemma again. Then

L2 = L1j , since L1 ⋅L2 = 1 and by relabelling the lines Fi, we may assume that L2 = L12.

Lemma 4.7.4. If C is a conic in S passing through p, then C = A or C = Bi, with π(C) either

a conic through all marked points but pi or a line through p and pi, respectively.

Proof. By Lemma 3.1.22, C has arithmetic genus pa(C) = 0. By the genus formula, this implies

C2 = 0. Let C̄ = π∗(C) ⊂ P2, C̄ ∼ OP2(d) for some d ≥ 1. Hence C ∼ π∗(OP2(d)) − ∑aiEi for

ai ≥ 0. This gives

0 = C2 = d2 −∑a2
i , 2 = (−KS) ⋅C = 3d −∑ai. (4.131)

Given that ai are non-negative integers, we have ∑a2
i ≥ ∑ai. Hence

0 = d2 −∑a2
i ≤ d2 −∑ai = d2 − 3d + 2 = (d − 1)(d − 2),

so d = 1 or d = 2. The only possibilities for ai for (4.131) to hold are ∑ai = 2 when d = 1 and

∑ai = 4, when d = 2. All these possibilities are precisely the ones classified in Table 3.3, proving

the Lemma.

Lemma 4.7.5. There are no irreducible conics passing through pseudo-Eckardt points. Given

an irreducible conic C in S and a point p ∈ C, we can choose a model γ∶S → P2 such that

C = B1.

Proof. First we prove the last assertion by case analysis on the position of p ∈ C.

If C is reducible, then C = L1 +L2 the union of two lines intersecting at a point r = L1 ∩L2.

By Lemma 4.7.3 we can choose a model such that C = E1 +L12 = B1.

127



If C is irreducible we distinguish two cases: p ∈ L, a line or p is in no line. If p ∈ L a line,

we may assume by Lemma 4.7.3 that L = E1. Then C ≠ Bj for j ≥ 2, since otherwise:

0 = Bj ⋅E1 = C ⋅E1 ≥ multp(C) ⋅multp(E1) = 1, (4.132)

a contradiction.

If C = A, take Fi and γ ∶ S → P2 as in the proof of Lemma 4.7.3, case (ii). Because C is

irreducible, C = γ(A) ∼ OP2(d) by the genus formula on P2. Moreover:

A ∼ γ∗(OP2(d)) −
4

∑
i=1

(Fi ⋅A)Fi = γ∗(OP2(d)) − F4,

and 2 = A ⋅ (−KS) = 3d − 1, so d = 1. Therefore under the new blow-up C is B4. By obvious

relabelling of the Fj we can consider C = B1.

We prove the first assertion. Suppose that p = E1 ∩ L12 but C is irreducible. By Lemma

4.7.4 and (4.132), C = A or C = B1. However if L12 /⊆ Supp(C), then

0 = B1 ⋅L12 ≥ multpB1 ⋅multpL12 ≥ 1

0 = B1 ⋅A ≥ multpB1 ⋅multpA ≥ 1

which is absurd.

The following two lemmas are needed in the proof of Theorem 4.7.9. We give a joint proof

after the statements.

Lemma 4.7.6. Let S be a non-singular del Pezzo surface of degree 5. Let C ∼ −KS be a

non-singular curve and p ∈ C be a point which belongs to at most one line. Let 0 < β ≤ 1. Then

there is an effective Q-divisor G = ∑ giGi∼Q −KS satisfying the following:

(i) The pair (S, (1 − β)C + ωβG) is log canonical where ω = min{1, 1
2β

}.

(ii) The point p ∈ Gi for all Gi.

(iii) Each Gi is irreducible and smooth and has degGi ≤ 2.

Lemma 4.7.7. Let S be a non-singular del Pezzo surface of degree 5. Let p ∈ S, q ∈ E ⊂ S̃ σÐ→ S,

the exceptional curve E in the blow-up σ of S at p. Let C ∼ −KS be a non-singular curve and

p ∈ C. Assume that p belongs to at most one (−1)−curve and that q /∈ L̃, the strict transform

of any (−1)-curve L ⊂ S. Moreover, if p ∈ L, a (−1)-curve, then q /∈ B̃, the strict transform

in S̃ of any irreducible conic B ⊂ S. Let 0 < β ≤ 1. Then there is an effective Q-divisor

H = ∑hiHi∼Q −KS satisfying the following:

(i) The pair (S, (1 − β)C + ωβH) is log canonical where ω = min{1, 1
2β

}.

(ii) The point p ∈Hi for all Hi.

(iii) Each Hi is irreducible and smooth and has degHi ≤ 3.

(iv) the point q ∈ H̃i, the strict transform of Hi via σ, ∀Hi such that degHi > 1.
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Proof of lemmas 4.7.6 and 4.7.7 . We will construct the Q-divisors G and H explicitly, by case

analysis on the position of p ∈ S and q ∈ E. We will use curves from Table 4.2. These were

constructed depending on p and q and were possibly reducible. The degree condition of each Gi

and Hi in (iii) will be clear from the construction we give, as well as condition (ii) on p ∈ G,H
and condition (iv), for H. We will check log canonicity (condition (i)). The most involved part

of the proof will consist on showing that the curves chosen in each particular case are irreducible

(condition (iii)). Smoothnes follows from Lemma 4.7.1.

Case 1: The point p is not in any line.

In particular p /∈ Ei for all i. Let

G = 1

2

4

∑
i=1

Bi +
1

2
A∼Q −KS .

The Q-divisor G only contains conics in its support. These conics are irreducible, since oth-

erwise they would be the union of two lines, with one of them passing through p, contradicting

the assumption.

Observe that Bi ⋅ Bj = 1 = A ⋅ Bi = 1 for all 1 ≤ i < j ≤ 4. Furthermore C ⋅ Bi = C ⋅ A = 2.

Therefore C can be tangent to at most one conic at pand in that case with multiplicity 2.

Assume that is the case, since it is when the discrepancy is the worst. the minimal log resolution

f ∶ S̃ → S of (S, (1 − β)C + ωβG) consists of two blow-ups. The log pullback is

f∗(KS + (1 − β)C + ωβG)∼Q −KS̃ + (1 − β)C̃ + ωβG̃ + (5

2
ωβ − β)F1 + (6ωβ

2
− 2β)F2.

If 0 < β ≤ 1
2
, then

5

2
ωβ − β = 5

2
β − β = 3

2
β ≤ 3

4
< 1,

and
6ωβ

2
− 2β = 3β − 2β = β ≤ 1

2
< 1.

If 1
2
≤ β ≤ 1, then

5

2
ωβ − β = 5

4
− β ≤ 3

4
< 1,

and
6

2
ωβ − 2β = 3

2
− 2β ≤ 1

2
< 1.

Therefore (S, (1 − β)C + ωβG) is log canonical.

Case 1a: The point q does not lie in the strict transform of any conic of S.

Let

H = 1

3

4

∑
i=1

Ri +
1

3
R∼Q −KS .

This Q-divisor contains only cubics in its support. Let Hi be any of these cubics. If Hi was

reducible, then Hi = ∑H ′
i + H ′′

i with H ′
i being a line and H ′′

i being a conic. Since p ∈ Hi

and q ∈ H̃i, then either p ∈ H ′
i or p ∈ H ′′

i and q ∈ H̃ ′′
i , contradicting the hypotheses 1 and 1a,

respectively. Therefore Hi is irreducible for all i.

Observe that Ri ⋅Rj = 2 for 1 ≤ i < j ≤ 4. Moreover R ⋅Ri = 2. Since C ⋅R = C ⋅Ri = 3 for

all i, the worst situation regarding computing the discrepancy of the pair (S, (1 − β)C +ωβH)
arises when (R ⋅Ri)∣p = 2, (C ⋅Ri)∣p = 2 for all 1 ≤ i ≤ 4, (C ⋅R)∣p = 3 and (Ri ⋅Rj)∣p = 2 for all

1 ≤ i < j ≤ 4, since C cannot intersect with multiplicity 3 locally at p two curves which intersect
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each other at p with multiplicity 2.

In this case the minimal log resolution f ∶ S̃ → S of (S, (1−β)C +ωβH) consists of 3 consec-

utive blow-ups. The log pullback is

f∗(−KS + (1 − β)C + ωβH)∼Q −KS̃ + (1 − β)C̃ + ωβH̃+

(5

3
ωβ − β)F1 + (10

3
ωβ − 2β)F2 + (11

3
ωβ − 3β)F3.

If 0 < β ≤ 1
2
, then

5

3
ωβ − β = 2

3
β < 1,

10

3
ωβ − 2β = 4

3
β ≤ 2

3
< 1 and

11

3
ωβ − 3β = 2

3
β < 1.

If 1
2
≤ β ≤ 1, then

5

3
ωβ − β = 5

6
− β < 1,

10

3
ωβ − 2β = 5

3
− 2β ≤ 2

3
< 1 and

11

3
ωβ − 3β = 11

6
− 3β ≤ 1

3
< 1.

Therefore the pair (S, (1 − β)C + ωβH) is log canonical.

Case 1b: The point q ∈ Q̃ for Q a conic of S. By Lemma 4.7.5 we may assume Q = B1.

Let

H = R1 +B1∼Q −KS .

B1 is irreducible since p ∈ B1 and p lies in no line. If R1 was reducible, then R1 = Q + L, the

union of a conic Q and a line L with p ∈ Q, q ∈ Q̃. Since all conics intersect each other normally

(see Table 4.2), then Q = B1. But then L ∼ R1 −B1 ∼ π∗(OP2(1)) −E1 −E2 −E3 −E4, which is

not one of the lines in S, as classified in Lemma 4.7.2.

Observe that R1 ⋅B1 = 2. Therefore R1 and B1 are, at worst, tangent at p with multiplicity

2. Moreover C ⋅ B1 = 2. Since C ⋅ R1 = 3, then the worst situation regarding computing the

discrepancy of the pair (S, (1 − β)C + ωβH) arises when (C ⋅ R1)∣p = 3, (C ⋅ B1)∣p = 2 and

(B1 ⋅R1)∣p = 2. In that case the minimal log resolution f ∶ S̃ → S of (S, (1− β)C +ωβH consists

of 3 consecutive blow-ups. The log pullback is

f∗(−KS +(1−β)C+ωβH)∼Q−KS̃ +(1−β)C̃+ωβH̃+(2ωβ−β)F1+(4ωβ−2β)F2+(5ωβ−3β)F3.

If 0 < β ≤ 1
2
, then

2ωβ − β = β < 1, 4ωβ − 2β = 2β ≤ 1 and 5ωβ − 3β = 2β ≤ 1.

If 1
2
≤ β ≤ 1, then

2ωβ − β = 1 − β < 1, 4ωβ − 2β = 2 − 2β ≤ 1 and 5ωβ − 3β = 5

2
− 3β ≤ 1.

Therefore the pair (S, (1 − β)C + ωβH) is log canonical.

Case 2: The point p is in exactly one line. By Lemma 4.7.3 we may assume that p ∈ E1.

Let

G = A +B1 +E1 ∼ −KS .
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If A or B1 were reducible, then there would be lines with rational classes

A −E1 ∼ π∗(OP2(2)) − 2E1 −E2 −E3 −E4, or

B1 −E1 ∼ π∗(OP2(1)) − 2E1,

which is not possible by Lemma 4.7.2. Since

A ⋅E1 = B1 ⋅E1 = B1 ⋅A = C ⋅E1 = 1 and A ⋅C = B1 ⋅C = 2,

the worst situation regarding the computation of the discrepancies takes place when (A⋅C)∣p = 2

and (B1 ⋅C)∣p = 1. Let f ∶ S̃ → S be the minimal log resolution of (S, (1−β)C+ωβG). It consists

of 2 blow-ups over p with exceptional divisors F1, F2. Therefore the log pullback is

f∗(KS + (1 − β)C + ωβG) =KS̃ + (1 − β)C̃ + ωβG̃ + (3ωβ − β)F1 + (4ωβ − 2β)F2.

If 0 < β ≤ 1
2
, then 3ωβ − β = 2β ≤ 1 and 4ωβ − 2β = 2β ≤ 1. If 1

2
≤ β ≤ 1, then 3ωβ − β ≤ 3

2
− β ≤ 1

and 4ωβ − 2β ≤ 2 − 2β ≤ 1.

Therefore the pair (S, (1 − β)C + ωβG) is log canonical.

Case 2a: The point q /∈ Q̃ for Q a line or a conic in S. In particular q /∈ Ẽ1. Let

H = 1

2
E1 +

1

2

4

∑
i=2

Ri∼Q −KS .

By assumption E1 is the only line which contains p. By Lemma 4.7.4 there is a finite number

of conics containing p. Therefore R2,R3,R4 are all irreducible, since each of them has degree

3, their strict transform in S contains q and there is no conic or line whose strict transform

passes through q.

Observe that Ri ⋅ Rj = 2 for i ≠ j, E1 ⋅ Ri = 1 for i ≥ 2 and C ⋅ Ri = 3, ∀i. Therefore

in order to resolve (S, (1 − β)C + ωβG), the worst situation arises when (C ⋅ R2)∣p = 3 and

(Ri ⋅Rj)∣p = 2, ∀i ≠ j. Let f ∶ S̃ → S be the minimal log resolution. It consists of 3 blow-ups

over p with exceptional divisors F1, F2, F3 and after the second blow-up the strict transforms

of Ri are disjoint. Therefore the log pullback is

f∗(KS + (1−β)C +ωβG) =KS̃ + (1−β)C̃ +ωβG̃+ (2ωβ −β)F1 + (7

2
ωβ − 2β)F2 + (4ωβ − 3β)F3.

Observe that 2ωβ −β ≤ 1−β ≤ 1. If 0 < β ≤ 1
2
, then 7

2
ωβ − 2β ≤ 3

2
β ≤ 3

4
≤ 1 and 4ωβ − 3β ≤ β ≤ 1.

If 1
2
≤ β ≤ 1, then 7

2
ωβ − 2β ≤ 7

4
− 2β ≤ 3

4
≤ 1 and 4ωβ − 3β ≤ 2 − 3β ≤ 1.

Therefore the pair

(S, (1 − β)C + ωβH)

is log canonical.

131



4.7.2 Computation of the dynamic α–invariant

Lemma 4.7.8. Let S be a non-singular del Pezzo surface of degree 5 and C ∈ ∣ − KS ∣ be a

smooth curve. Then

α(S, (1 − β)C) ≤ ω ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(4.133)

Proof. If C contains a pseudo-Eckardt point p, by Lemma 4.7.3 we can choose a model π∶S → P2

such that p = E1 ∩L12.

Notice that

D ∶= 2E1 +L12 +L13 +L14 ∼ −KS

is a divisor with simple normal crossings. Let f ∶ S̃ → S be the blow-up of p = E1 ∩ L with

exceptional divisor E. Then f is a log resolution of (S, (1 − β)C + λβD), since C ⋅E1 = C ⋅L =
C ⋅L′ = C ⋅E2 = 1. Its log pullback is

f∗(KS + (1 − β)C + λβD) ∼ −KS̃ + (1 − β)C̃ + λβD̃ + (3λβ − β)E

and therefore

α(S, (1 − β)C) ≤ min{lct(S, (1 − β)C,βC), lct(S, (1 − β)C,βD)}

≤ min{1,
1

2β
,
1 + β
3β

} = min{1,
1

2β
} = ω.

If C contains no pseudo-Eckardt points, the pair

(S, (1 − β)C + λβD)

has simple normal crossings and we obtain

α(S, (1 − β)C) ≤ min{lct(S, (1 − β)C,βC), lct(S, (1 − β)C,βD)} ≤ min{1,
1

2β
} = ω.

Theorem 4.7.9. Let S be a non-singular del Pezzo surface of degree 5 and C ∈ ∣ −KS ∣ be a

smooth curve. Then

α(S, (1 − β)C) = ω ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(4.134)

Proof. By Lemma 4.7.8 we have that α(S, (1−β)C) ≤ ω. We proceed by reductio ad absurdum.

Suppose that α(S, (1− β)C) < ω. Then, there is an effective Q-divisor D∼Q −KS such that the

pair

(S, (1 − β)C + λβD) (4.135)

is not log canonical for some λ < ω at some point p ∈ S. Observe that

λβ < ωβ ≤ 1

2
= glct(S), ∀0 < β ≤ 1 (4.136)

by Theorem 4.7.9. By Lemma 2.1.22, the pair (4.135) is log canonical in codimension 1 and
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p ∈ C. Observe that by Lemma 2.3.9 (i), we have that

(1 − β) + λβmultpD > 1,

which implies

multpD > 1

λ
> 1. (4.137)

Step 1: We show the point p is not a pseudo-Eckardt point.

Suppose for contradiction that p is a pseudo-Eckardt point. By Lemma 4.7.3 we may choose

π∶S → P2 such that p = E1 ∩L12. For L = E1, L12 we have that L ⊆ Supp(D) since otherwise

1 = L ⋅D ≥ multpD > 1,

by (4.137). Hence we may write D = aE1 + bL12 +Ω where a, b > 0 and E1, L12 /⊆ Supp(Ω). We

claim that the pair

(S, (1 − β)C + λβ(2E1 +L12 +L13 +L14)) (4.138)

is log canonical. Indeed, if λβ ≤ 1
2

it is log canonical in codimension 1 and the only point in which

the pair does not have simple normal crossings is p. However, blowing up p with exceptional

divisor E it is easy to see that the discrepancy along E is a(E) = 3λβ − β < 3ωβ − β ≤ 1.

Indeed if 0 < β ≤ 1
2
, then 3ωβ − β = 2β ≤ 1 and if 1

2
≤ β ≤ 1, then 3ωβ − β = 3

2
− β ≤ 1. Since

2E1 + L12 + L13 + L14 ∼ −KS , by Lemma 2.3.8 we may assume that for L = L13 or L = L14,

L /⊆ Supp(D). Therefore 1 =D ⋅L ≥ a. Similary the pair

(S, (1 − β)C + λβ(E1 + 2L12 +E2 +L34))

is log canonical. Given that E1 + 2L12 +E2 +L34 ∼ −KS , by Lemma 2.3.8, we may assume that

for L = L34 or L = E2, L /⊂ Supp(D). Therefore 1 =D ⋅L ≥ b. We conclude

a + b ≤ 2. (4.139)

Now observe that

1 = E1 ⋅D ≥ −a + b +multpΩ,

1 = L12 ⋅D ≥ a − b +multpΩ,

and adding these two equations it follows that multpΩ ≤ 1. Therefore

multp((1 − β)C + λβΩ) ≤ 1 − β + λβ < 1 − β + β ≤ 1.

The hypotheses of Theorem 2.3.11 are satisfied. Therefore one of the following holds:

2(1 − λβa) < L12 ⋅ ((1 − β)C + λβΩ) = 1 − β + λβ(1 − a + b)

2(1 − λβb) < E1 ⋅ ((1 − β)C + λβΩ) = 1 − β + λβ(1 + a − b).

Since the roles of a and b are symmetric, it is enough to disprove the latter equation to obtain

a contradiction. Indeed, the last inequality implies

1 < λβ(1 + a + b) − β < 3ωβ − β
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by (4.139). We show that this is impossible. Indeed, if 0 < β ≤ 1
2
, then 3ωβ − β = 2β ≤ 1 and if

1
2
≤ β ≤ 1, then 3ωβ − β = 3

2
− β ≤ 1.

Step 2: The blow-up setting.

Let σ∶ S̃ → S be the blow-up of p with exceptional divisor E. By Lemma 2.3.5 the pair

(S̃, (1 − β)C̃ + ωβD̃ + (λβmultpD − β)E) (4.140)

is not log canonical at some q ∈ E. By Lemma 4.7.6 there is an effective Q-divisor G =
∑aiGi∼Q −KS with all Gi irreducible and satisfying degGi ≤ 2 and p ∈ Gi. Moreover the pair

(S, (1 − β)C + λβG)

is log canonical at p. Then by Lemma 2.3.8, we may assume there is an irreducible curve

Gi ⊆ Supp(G) such that Gi /⊆ Supp(D). Then

2 ≥D ⋅Gj ≥ multpD. (4.141)

This implies

λβmultpD − β < 2ωβ − β ≤ 1. (4.142)

Indeed, if 0 < β ≤ 1
2
, then

3ωβ − β = 2β ≤ 1.

If 1
2
≤ β ≤ 1, then

3ωβ − β = 3

2
− β ≤ 1.

Therefore the pair (4.140) is log canonical along E, and therefore log canonical in codimension

1, i.e. the point q is an isolated centre of non-log canonical singularities.

In fact, q ∈ C̃, since otherwise the pair

(S̃, λβD̃ + (λβmultpD − β)E)

is not log canonical at q ∈ E, but this implies

1 < λβD̃ ⋅E = λβmultpD ≤ 1

by Lemma 2.3.9 (iii) and (4.141), which is absurd.

Suppose p ∈ L a line in S. Since C ⋅L = degL = 1, then C̃ ⋅ L̃ = 0, so C̃ ∩ L̃ = ∅ and as a result

q does not belong to the strict transform of L̃.

To ease the readibility, we leave the proof of the following claim for later.

Claim 4.7.10. If p belongs to a (−1)-curve, then q does not belong to the strict transform of

a conic.

Now we are on the hypothesis of Lemma 4.7.7 and we conclude that there is an effective

Q-divisor H = ∑hiHi∼Q −KS such that for all Hi the point p ∈ Hi and degHi ≤ 3. Moreover

q ∈ H̃i for all Hi with degHi > 1 and the pair

(S, (1 − β)C + λβH)
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is log canonical. Then, by Lemma 2.3.8 we may assume there is Hi /⊆ Supp(D). Observe that

if degHi = 1 then

1 =Hi ⋅D ≥ multpD > 1

by (4.137), which is absurd.

We use Hi to bound multqD̃:

3 −multpD ≥ H̃iD̃ ≥ multqD̃,

which gives

3 ≥ multpD +multqD̃. (4.143)

We claim that

multq(λβD̃ + (λβmultpD − β)E) < ωβ(multpD +multqD̃) − β ≤ 1. (4.144)

Indeed, if 1 ≥ β ≥ 1
2
, then (4.143) and (4.136) give

ωβ(multqD̃ +multpD) − β ≤ 3

2
− β ≤ 1. (4.145)

If 0 < β ≤ 1
2
, then

ωβ(multq +multpD) − β ≤ 3β − β = 2β ≤ 1.

We will apply Theorem 2.3.12 to the pair (4.140) with n = 2. First we use (4.143) and claim

multq(λβD̃ + (λβmultpD − β)E) < ωβ(multpD +multqD̃) − β ≤ 3ωβ − β ≤ 1

2
+ β. (4.146)

Indeed, if 0 < β ≤ 1
2
, then

3ωβ − β = 2β = β + β ≤ 1

2
+ β.

If 1
2
≤ β ≤ 1, then

3ωβ − β = 3

2
− β = 1

2
+ (1 − β) ≤ 1

2
+ 2β − β = 1

2
+ β.

Inequalities (4.145) and (4.146) are the hypotheses of Theorem 2.3.12 when n = 2. The Lemma

gives

C̃ ⋅ (λβD̃ + (λβmultpD − β)E) > 1 + 2β.

We claim

C̃ ⋅ (λβD̃ + (λβmultpD − β)E) ≤ 1 + 2β,

which will give a contradiction, finishing the proof.

Observe that

C̃ ⋅ (λβD̃ + (λβmultpD − β)E)
<ωβ(C ⋅D −multpD +multpD) − β
=5ωβ − β.

If 0 < β ≤ 1
2
, then

5ωβ − β = 4β = 2β + 2β ≤ 1 + 2β.
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If 1
2
≤ β ≤ 1, then

5ωβ − β = 5

2
− β = 1 + 3

2
− β ≤ 1 + 3β − β = 1 + 2β.

Proof of Claim 4.7.10. Suppose for contradiction that q0 ∶= p ∈ L, where L is a line. By Lemma

4.7.3 we may assume that L = E1. Let q1 ∶= q ∈ E =∶ F1, the exceptional curve of S1 ∶= S̃, the

blow-up of q0. Suppose for contradiction that q1 ∈ Z̃ for Z̃, the strict transform of a conic Z ⊂ S
with q0 ∈ Z. Then, by Lemma 4.7.5, we may assume that Z = B1. The pair

(S1, (1 − β)C1 + λβD1 + λβ(multpD − β)F1)

is not log canonical at some point q1 = B1 ∩ C1 ∩ F1 where for any Q-divisor A we denote by

A1 its strict transform in S1. The curve B1 /Supp (D), since otherwise, by Lemma 2.3.9 (i), we

obtain a contradiction:

1 < multp((1 − β)C1 + λβD1 + (λβmultpD − β)F1)
≤ B1 ⋅ ((1 − β)C1 + λβD1 + (λβmultpD − β)F1)
= (1 − β) + λβ(2 −multpD) + (λβmultpD − β)
= 1 + 2λβ − 2β < 1 + 2ωβ − 2β ≤ 1.

Indeed, if 0 < β ≤ 1
2
, then 1 + 2ωβ − 2β = 1 and if 1

2
≤ β ≤ 1, then 1 + 2ωβ − 2β ≤ 1 + 1 − 2β ≤ 1.

Therefore we may write D = aE1 + bB1 + Ω where E1,B1 /Supp (Ω) and a > 0, b ≥ 0. Let

S0 = S, C0 = C, D0 = D and q0 = q as in Theorem 2.3.10. Let i ≥ 1 and let fi∶Si → Si−1 be the

blow-up of the point qi−1 = Ci ∩Fi−1 with exceptional curve Fi. Let Ai−1 or A be any Q-divisor

in Si−1. We will denote its strict transform in Si by Ai. Let mi = multqiDi. Recall that the

assumption for contradiction is that the pair

(S1, (1 − β)C1 + λβD1 + (λβm0 − β)F1) (4.147)

is not log canonical at q1 = B1
1 ∩ C1 ∩ F1 and is log canonical near q1. Let x + 0 = multqiΩ

i.

Then m0 = a + b + x0 and m1 = b + x1. Recall from (4.142) that λβm0 ≤ 1. This is one of the

hypothesis of Theorem 2.3.10 and we will assume it from now onwards. Since the pair is log

canonical near q1, but not at q1 by Lemma 2.3.5, the pair

(S2, (1 − β)C2 + λβD2 + (λβm0 − β)F 2
1 + (λβ(m0 +m1) − 2β)F2)

is not log canonical at some (possibly all) t2 ∈ F2. We bound the multiplicities of D:

1 = E1 ⋅D ≥ −a + b + x0. (4.148)

Let A be the only conic in

A = ∣π∗(OP2(2)) −E1 −E2 −E3 −E − 4∣

with q0 ∈ A, as constructed in section 4.7.1. The curve A is irreducible since otherwise there
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would be a line in S with class

A −E1 ∼ π∗(OP2(2)) − 2E1 −E2 −E3 −E4

which is impossible by Lemma 4.7.2. The pair

(S, (1 − β)C + λβ(A +B1 +E1))

is log canonical by Lemma A.4.1.

Therefore by Lemma 2.3.8, we may assume that A /⊆ Supp(D) and

2 = A ⋅D ≥ a + b + x0 =m0. (4.149)

This implies

2λβm0 − 2β ≤ 4λβ − 2β < 4ωβ − 2β ≤ 1.

Indeed, if 0 < β ≤ 1
2
, then 4ωβ − 2β = 2β ≤ 1, while if 1

2
≤ β ≤ 1, then 4ωβ − 2β = 2 − 2β ≤ 1.

Now, by Theorem 2.3.10 (iv) with i = 2, we may conclude that t2 = F2 ∩C2 = q2. Since

λβ(m0 +m1) − 2β ≤ 2λβm0 − β ≤ 1,

by Theorem 2.3.10 (i) with i = 3, we conclude that the pair

(S3, (1 − β)C3 + (λβ(m0 +m1) − 2β)F 3
2 + (λβ(m0 +m1 +m2) − 3β)F3)

is not log canonical at some t3 ∈ F3. Since (C ⋅B1)q0 = 2, C ⋅E1 = 1, then m1 = b+x1 and mi = xi
for i ≥ 2. From (4.148) and (4.149) we obtain

λβ(m0 + 2m1) − 3β

<ωβ(a + 3b + x0 + 2x1) − 3β

≤ωβ(a + 3b + 3x0) − 3β

≤5ωβ − 3β ≤ 1.

Indeed, if 0 < β ≤ 1
2
, then 5ωβ − 3β = 2β ≤ 1 while if 1

2
≤ β ≤ 1, then 5ωβ − 3β = 5

2
− 3β ≤ 1.

Therefore by Theorem 2.3.10 (iv) with i = 3, we conclude that t3 = C3 ∩ F3 = q3. Therefore

the pair

(S3, (1 − β)C3 + λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)

Now, by Lemma 2.3.9 (iii) applied with C3, we obtain a contradiction:

1 < C3 ⋅ (λβD3 + (λβ(m0 +m1 +m2) − 3β)F3)
< 5ωβ − 3β ≤ 1.

4.8 Smooth intersection of two quadrics

In this section we will use notation and curves from Section (3.3).
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Theorem 4.8.1. Let S be a smooth del Pezzo surface of degree 4 and let C be a smooth elliptic

curve in S, C∼Q −KS. The dynamic α-invariant α(S, (1 − β)C) is as follows:

(1) Suppose C does not contain any pseudo-Eckardt point nor any point p with two irreducible

conics A and B satisfying A +B ∼ −KS and A ∩B = {p} with (A ⋅ C)∣p = (B ⋅ C)∣p = 2.

Then

α(S, (1 − β)C) = ω1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

(4.150)

(2) Suppose C contains no pseudo-Eckardt points but there is a point p ∈ C such that there are

two irreducible conics A and B satisfying A +B ∼ −KS and A ∩B = {p} with (A ⋅C)∣p =
(B ⋅C)∣p = 2. Then

α(S, (1 − β)C) = ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + 2β

4β
for

1

2
≤ β ≤ 5

6
,

2

3β
for

5

6
≤ β ≤ 1.

(4.151)

(3) Suppose C contains a pseudo-Eckardt point. Then

α(S, (1 − β)C) = ω3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + β
3β

for
1

2
≤ β ≤ 1.

(4.152)

Proof of Theorem 4.8.1. We choose an effective Q-divisor Di∼Q −KS for each case in the state-

ment:

(1) Let L1 and L2 be two lines intersecting each other at a pseudo-Eckardt point p and Q

be the unique conic satisfying D1 = L1 + L2 +Q ∼ −KS and such that p ∈ Q. It is clear

that Q exists as a divisor. We will show we can choose Q to be effective. Observe that

Q2 = 0 and K ⋅ Q = −2. Therefore, by the genus formula, pa(Q) = 0. By Proposition

3.1.18, h0(S,OS(Q)) ≥ 2. Hence we can choose Q to be effective and such that p ∈ Q.

(2) Let D2 = A +B ∼ −KS if β ≤ 5
6
. If β > 5

6
let D2 =D1.

(3) Let D3 = L1+L2+Q ∼ −KS be the two lines intersecting each other at the pseudo-Eckardt

point p ∈ C and Q be the unique conic satisfying D1 = L1 + L2 +Q ∼ −KS and such that

p ∈ Q, as above.

By lemmas A.5.1, A.5.2 and A.5.3, α(S, (1 − β)C) ≤ lct(S, (1 − β)C,Di) = ωi holds for ωi as in

the statement of the Theorem. We will need the following arithmetic observation.

Claim 4.8.2. The following inequality holds

ω3β ≤ ω2β ≤ ω1β =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

2
for 0 < β ≤ 1

2
,

2

3
for

1

2
≤ β ≤ 1,

≤ 2

3
= glct(S). (4.153)

Moreover ω3 ≤ ω2 ≤ ω1.
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Proof. The statement is trivial for 0 < β ≤ 1
2
. Suppose β ≥ 1

2
. Then it is straight forward to

check that 1+β
3β

≤ 1+2β
4β

. If β ≥ 2
3
, then 1+2β

4β
≤ 2

3β
also holds. Therefore ω3 ≤ ω2 ≤ ω1 holds. The

claim follows by Theorem 1.2.5.

Suppose for contradiction that ∃D∼Q −KS an effective Q-divisor and 0 < λ < ωi depending

on β and ωi such that the pair (S, (1 − β)C + λβD) is not log canonical at some p ∈ S. By

Lemma 2.1.22, this pair is log canonical near p and p ∈ C.

Since (S,C) is log canonical, by Lemma 2.3.8, we may assume that C /⊆ Supp(D). We need

to show that the pair

(S, (1 − β)C + λβD) (4.154)

is log canonical.

Step 1: We show p = C ∩L where L is some line.

Suppose there is no line L such that p ∈ L. Since λ < ω ≤ 1, by Lemma 2.1.5, the pair

(S, (1− β)C + βD) is not log canonical. Then by Lemma 3.2.13, the surface S satisfies the Cat

Property at p and therefore ∃T ∈ ∣ −KS ∣ with p ∈ T such that T ⊂ Supp((1 − β)C + βD). By

Lemma 2.3.7 we may assume (S,T ) is not log canonical and therefore T ⊂ Supp(D) (i.e. T is

a cat). The cats of S at p are classified in Lemma 3.2.14.

If T is irreducible, then the pair (S, (1 − β)C + λβT ) is log canonical by Lemma A.5.4.

If T = A +B, the union of two conics intersecting only at p, then by lemma A.5.2 the pair

(S, (1 − β)C + λβT ) is log canonical.

In any case we may assume, using Lemma 2.3.8 that T /⊂ Supp(D). But then Supp(D)
contains no cats, contradicting Lemma 2.2.6. Hence, p = L ∩C for some line L.

Step 2: We show L is the only line through p (proof of case (3)).

Suppose p = L ∩M is a pseudo-Eckardt point, i.e. L and M are lines intersecting at p.

Notice that since C ⋅L = −KS ⋅L = 1, the curves C and L intersect with simple normal crossings.

By hypothesis, in cases (1) and (2) in the statement of the Theorem the point p /∈ L′ for any

other line L′. Therefore we are in case (3) in the statement of the Theorem and λ < ω3.

The line M ⊆ Supp(D), since otherwise

1 =M ⋅D ≥ multpD > β

λβ
> 1

where we apply Lemma 2.3.9 (i) to the pair (4.154). In the same fashion L ⊂ Supp(D). We

write

D = a1L + a2M +Ω

where 1 ≥ λβai > 0 since the pair (4.154) is log canonical in codimension 1. Let Q ∼ −KS−L−M
be a divisor. Since L⋅M = 1, then Q⋅−KS = 2 and Q2 = 0. Therefore by Lemma 3.1.22, pa(Q) = 0

and by Proposition 3.1.18, we may take Q to be effective and such that p ∈ Q. The conic Q is

irreducible, since otherwise there would be a third line N through p, which would be an Eckardt

point. This is impossible by Lemma 3.1.15.

The pair (S, (1 − β)C + ω3β(L +M +Q)) is log canonical by Lemma A.5.3. Therefore by

Lemma 2.3.8 we may assume Q /⊆ Supp(D) and

2 =D ⋅Q ≥ a + b +multpΩ ≥ a + b. (4.155)

Note that 1 =D ⋅L ≥ −a+b+multpΩ and 1 =D ⋅M ≥ a−b+multpΩ. Adding these two inequalities

139



it follows that multpΩ ≤ 1. As a result

multpΩ((1 − β)C + λβΩ) ≤ 1 − β + βmultpΩ ≤ 1 − β + β ≤ 1.

Finally, since L ⋅M = 1 the pair

(S, (1 − β)C + λβ(a1L + a2M +Ω))

satisfies the hypotheses of Theorem 2.3.11, so

((1 − β)C + λβΩ) ⋅L > 2(1 − λβa2) or ((1 − β)C + λβΩ) ⋅M > 2(1 − λβa1). (4.156)

The first inequality implies

2(1 − λβa2) < ((1 − β)C + λβΩ) ⋅L =
(1 − β) + λβ(−KS − a1L − a2M) ⋅L =

(1 − β) + λβ(1 + a1 − a2).

Rearranging this inequality we obtain

3ω3β > 3λβ ≥ λβ(1 + a1 + a2) > 1 + β,

by (4.155) However, this implies an absurdity:

(1 + β)
3β

< ω3 = min{1,
(1 + β)

3β
} ≤ (1 + β)

3β
.

Since the roles of L and M are symmetric in Theorem 2.3.11 we also deduce a contradiction

from the second inequality in (4.156). We conclude that L is the only line with p ∈ L.

Step 3: Show there are no irreducible conics A +B ∼ −KS such that A ∩B = {p}.
It is easy to obtain a contradiction:

1 = L ⋅ −KS = L ⋅ (A +B) ≥ (L ⋅A)∣p + (L ⋅B)∣p = 1 + 1 = 2.

Therefore, we may assume that λ < ω1 and (S, (1−β)C +λβ(aL+Ω) is not log canonical at

p = L ∩C such that L is the only line which contains p. The Theorem is proven thanks to the

following Lemma 4.8.3.

Lemma 4.8.3. Let S be a non-singular del Pezzo surface of degree 4. Let D∼Q −KS be an

effective Q-divisor. Let C ∈ ∣ −KS ∣ be a smooth curve and L be a line in S. Let q0 = L ∩C and

assume L is the only line which contains q0. Let λ < ω1 = min{1, 1
2β

} where 0 < β ≤ 1. If the

pair

(S, (1 − β)C + λβD)

is log canonical in codimension 1, then it is also log canonical at q0.

Proof. Step 1: Setting in S.

Suppose (S, (1 − β)C + λβD) is not log canonical at q0. By Lemma 3.3.3 we may assume

L = E1. Observe that E1 ⊂ Supp(D), since otherwise we obtain a contradiction by Lemma 2.3.9
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(i):

1 = E1 ⋅D ≥ multq0D > 1 − (1 − β)
λβ

= 1

λ
> 1.

Write D = aE1 +Ω where a > 0 and E1 /⊆ Supp(Ω).

Let S0 = S, q0 = q, Ω0 = Ω, E0
1 = E1 and x0 = multq0Ω0. For i ≥ 1, let Si → Si−1 be the

blow-up of a point ti−1 with exceptional curve Fi where ti−1 ∈ Fi−1 for i ≥ 2 and q0 = E1 ∩ C
as above. Given any Q-divisor A or Ai−1 in Si−1, denote its strict transform in Si by Ai. Let

xi = multtiΩ
i. Let q1 = C1 ∩ F1. If ti−1 = qi−1 for i ≥ 2, let qi = Ci ∩ Fi. Step 2 will take care of

the case t1 ≠ q1 and Steps 3 and 4 will analyse the case t1 = q1.

Given a point p ∈ S, we constructed several curves of low degree which contained p in Section

3.3. In particular we found all conics through a given point. Let p = q0. Table 3.3 includes

all the conics through q0, its rational class and numerical properties. In particular the conics

B1 ∼ π∗(OP2(1)) −E1 and Ai ∼ π∗(OP2(2)) − ∑5
j=1
j≠i

Ej with 2 ≤ i ≤ 5 are irreducible. Indeed, if

they were reducible then they would split as B1 = E1 + L or Ai = Ei + L for some line L not

passing through q0, since L is the only line which contains q0. However, the rational class of L

must be

L ∼ B1 −E1 ∼ π∗(OP2(2)) − 2E1 or L ∼ Ai −E1 ∼ π∗(OP2(2)) − 2E1

and by Lemma 3.3.2 and Table 3.3 there is no line with such rational class.

Moreover B1 and Ai with 2 ≤ i ≤ 5 are all irreducible conics containing q0. Indeed, by

Lemma 3.3.4, every other conic must have class Bi ∼ π∗(OP2(1)) − Ei for 2 ≤ i ≤ 5 or A1 ∼
π∗(OP2(2)) −∑5

i=2 (see Table 3.3). However all these conics split in the union of two lines, one

of them being E1 and q0 ∈ E1:

Bi = Ei +L1i for i ≥ 2, and A1 = C0 +E1.

We define the Q-divisor

G = 1

3
(B1 +

5

∑
i=2

Ai) +
2

3
E1∼Q −KS

whose support consists of conics passing through q0. By Lemma A.5.5 the pair (S, (1 − β)C +
λβG) is log canonical. Hence, by Lemma 2.3.8 we may assume there is some curve M ⊆ Supp(G)
such that M /⊆ Supp(D). Since degM = 2, by Lemma 3.3.5 we may assume that M = B1. Hence

2 =D ⋅B1 ≥ a + x0 (4.157)

1 =D ⋅E1 ≥ −a + x0 (4.158)

3

2
≥ x0 (4.159)

where (4.159) follows from adding (4.157) and (4.158).

Now let

B = 1

2
C0 +

1

2
(L12 +L13 +L14 +L15) +

3

2
E1∼Q −KS .

By Lemma A.5.7 the pair (S, (1− β)C + λβB) is log canonical. Therefore we may assume that

for some irreducible component L ⊆ Supp(B), we have L /⊆ Supp(D) by Lemma 2.3.8. Observe
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that all possible L ≠ E1 are lines and L ⋅E1 = 1. Hence

1 =D ⋅L ≥ a. (4.160)

By (4.158)

λβ(a + x0) − β ≤ λβD ⋅B1 ≤ 2λβ − β ≤ 2ω1β − β ≤ 1 (4.161)

holds. Indeed, if 0 < β ≤ 2
3
, then 2ω1β−β = β ≤ 2

3
< 1 and if 2

3
≤ β ≤ 1, then 2ω1β−β = 4

3
β ≤ 2

3
< 1.

By Lemma 2.3.5, and (4.161) the pair

(S1, (1 − β)C1 + λβD1 + (λβ(a + x0) − β)F1) (4.162)

is not log canonical at some t1 ∈ E1 but it is log canonical near t1. Observe that C1 ⋅E1 = ∅,

since C ⋅E1 = 1. If t1 /∈ (C1 ∪E1
1) ∩ F1, then the pair

(S,λβΩ1 + (λβ(a + x0) − β)F1)

is not log canonical at t1, but Lemma 2.3.9 (iii) and (4.159) give a contradiction:

1 < λβΩ1 ⋅ F1 < ω1βx0 ≤
2

3
⋅ 3

2
≤ 1.

Step 2: we show that the point t1 ≠ E1
1 ∩F1. Suppose for contradiction thatt1 = E1

1 ∩F1.

Then the pair

(S1, (1 − β)C1 + λβD1 + (λβ(a + x0) − β)F1) (4.163)

is not log canonical at t1. In section (3.3) we constructed the cubic Q1 ∼ π∗(OP2(3)) − 2E1 −
∑5
i=2Ei as the curve passing through a point p = q0 such that its strict transform Q1

1 contains

t1. We claim the curve Q1 is irreducible. If this was not the case, then Q1 = L +M , the union

of a line and a conic with one of them containing t1. But t1 ∈ E1
1 , Ai ⋅ E1 = 1 for i ≥ 2 and

B1 ⋅E1 = 1, then t1 /∈ B1
1 ∪A1

i for i ≥ 2, which are all conics passing through q0 by Lemma 3.3.4

and the fact that A1 is reducible. Therefore L = E1 and

M ∼ Q1 −E1 ∼ π∗(OP2(3)) − 3E1 −
5

∑
i=2

Ei.

However there is no such conic in S by Lemma 3.3.4 and Table 3.3.

By Lemma A.5.6 the pair

(S, (1 − β)C + λβ(Q1 +E1))

is log canonical. Since Q1 +E1 ∼ −KS , by Lemma 2.3.8, we may assume that Q1 /⊆ Supp(D).
Hence

3 = Q1 ⋅D ≥ 2a + x0 + x1. (4.164)

By Lemma 2.3.5, since (4.163) is not log canonical, then the pair

(S2, λβ(aE2
1 +Ω2) + (λβ(a + x0) − β)F 2

1 + (λβ(2a + x0 + x1) − β − 1)F2) (4.165)
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is not log canonical at some isolated t2 ∈ F2. Indeed, the coefficient of F2 satisfies

λβ(2a + x0 + x1) − 2β ≤ 3λβ − 2β < 3ω1β − 2β ≤ 1

by (4.164) and case analysis on β: for 0 < β ≤ 2
3
, 3ω1β − 2β = β ≤ 2

3
and for 2

3
≤ β ≤ 1,

3ω1β − 2β = 2 − 2β ≤ 2
3
.

If t2 /∈ (F 2
1 ∪E2

1) ∩ F2, then the pair

(S2, λβΩ2 + (λβ(2a + x0 + x1) − 2β)F2)

is not log canonical at t2 and Lemma 2.3.9 (iii) gives a contradiction, using (4.159):

1 < λβΩ2 ⋅ F2 = λβx1 ≤ λβx0 < ω1βx0 ≤ 1.

If t2 = E2
1 ∩ F2, then the pair

(S2, λβ(aE2
1 +Ω2) + (λβ(2a + x0 + x1) − β − 1)F2)

is not log canonical. By Lemma 2.3.9 (iii) with E2
1 , we obtain

1 <E2
1 ⋅ (λβΩ2 + (λβ(2a + x0 + x1) − β − 1)F2)

=λβ(1 + a − x1 − x0 + 2a + x0 + x1) − β − 1

=λβ(3a + 1) − β − 1 < ω1β(3a + 1) − β − 1.

We claim that ω1β(3a + 1) − β − 1 ≤ 1, which gives a contradiction ruling out the case when

t2 = E2
1 ∩ F2. Indeed, if 0 < β ≤ 2

3
, then

ω1β(3a + 1) − β − 1 = 3aβ − 1 ≤ 3β ≤ 1

by (4.160). If 2
3
≤ β ≤ 1, then

ω1β(3a + 1) − β − 1 = 2a − β − 1

3
≤ 2 − 1 = 1

again by (4.160). Therefore t2 = F 2
1 ∩ F2. But then, the pair

(S2, λβΩ2 + (λβ(a + x0) − β)F 2
1 + (λβ(2a + x0 + x1) − β − 1)F2)

is not log canonical at t2. By Lemma 2.3.9 (iii) applied to F 2
1 , we obtain

1 <(λβΩ2 + (λβ(2a + x0 + x1) − β − 1)F2) ⋅ F 2
1

=λβ(x0 − x1 + 2a + x0 + x1) − β − 1

<ω1β(2a + 2x0) − β − 1 ≤ 4ω1β − β − 1,

by (4.157). We claim that 4ω1 − β ≤ 2 which contradicts the above statement. Indeed, if

0 < β ≤ 2
3
, then 4ω1β − β = 3β ≤ 2. If 2

3
≤ β ≤ 1, then 4ω1β − β = 8

3
− β ≤ 2.

Therefore the pair (4.165) is log canonical, which is impossible unless the pair (4.162) is log

canonical at E1
1 ∩ F1. Therefore the pair (4.162) is not log canonical at t1 = C1 ∩ F1 = q1. We
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may now apply Lemma 2.3.5 to conclude that the pair

(S2, (1 − β)C2 + λβΩ2 + (λβ(a0 + x0) − β)F 1
1 + (λβ(a + x0 + x1) − 2β) (4.166)

is not log canonical at some (possibly all) t2 ∈ F2.

Step 3: We show that q1 /∈ Q1 for any irreducible conic Q ⊂ S such that q0 ∈ Q.

Suppose for contradiction that q1 ∈ Q1 for some irreducible conic Q ⊂ S. By Lemma 3.3.4,

we may assume that Q = B1 or Q = Ai. Recall from Step 1 that we chose a model such that

B1 /⊂ Supp(D). Therefore we need to analyse each case separately.

Step 3a: We show q1 /∈ B1
1 . Suppose for contractiction that q1 = B1

1 ∩C1∩F1. This means

(B1 ⋅C)∣q0 = 2, i.e. C and B1 are tangent at q0. Since B1 /⊂ Supp(Ω), then

2 − a = Ω ⋅B1 ≥ x0 + x1 (4.167)

holds. In particular

λβ(a + x0 + x1) − β < 2ω1β − β ≤ 1.

Indeed if 0 < β ≤ 2
3
, then 2ω1β − β = β ≤ 2

3
< 1 and if 2

3
≤ β ≤ 1, then 2ω1β − β = 4

3
− β ≤ 2

3
≤ 1.

This is a necessary condition to apply Theorem 2.3.10 (ii)-(iv) when i ≥ 2, since multqiD
i = xi

for i ≥ 1 and multqD = a+x0, so λβ(multq0D+multq1D
1)−β ≤ 1. We will assume this condition

from now onwards. Therefore by Theorem 2.3.10 (iii) with i = 2 we conclude that t2 = C2 ∩F2.

Moreover

λβ(multq0D +multq1D
1) − 2β ≤ 1 − β ≤ 1

holds. Therefore the pair

(S3, (1 − β)C3 + λβΩ3 + (λβ(a + x0 + x1) − 2β)F 3
2 + (λβ(a + x0 + x1 + x2) − 3β)F3)

is not log canonical at some t3 ∈ F3 by Theorem 2.3.10 (i). By (4.159) and (4.167)

λβ(a + x0 + x1 + x2) − 2β < 7

2
ω1β − 2β ≤ 1. (4.168)

Indeed, if 0 < β ≤ 2
3
, then 7

2
ω1β − 2β = 3

2
β ≤ 1. If 2

3
≤ β ≤ 1, then 7

2
ω1β − 2β = 7

3
− 2β ≤ 1.

Now we can apply Theorem 2.3.10 (iii) with i = 3 and conclude that t3 = C3 ∩F3 = q3. Since

F 3
2 ⋅C3 = 0, then q3 /∈ F 3

2 and the pair

(S3, (1 − β)C3 + λβΩ3 + (λβ(a + x0 + x1 + x2) − 3β)F3)

is not log canonical at q3 = F3 ∩C3. By Lemma 2.3.9 (iii) with C3, we obtain a contradiction:

1 <C3 ⋅ (λβΩ3 + λβ(a + x0 + x1 + x2) − 3βF3) =
<ω1β(4 − a − x0 − x1 − x2 + a + x0 + x1 + x2) − 3β

=4ω1β − 3β ≤ 1.

Indeed, if 0 < β ≤ 2
3
, then 4ω1 − 3β = 3β < 1 and if 2

3
≤ β ≤ 1, then 4ω1β − 3β = 8

3
− 3β ≤ 2

3
< 1.

Step 3b: We show q1 /∈ A1
i for i ≥ 2. We proceed by reductio ad absurdum. Suppose

q1 ∈ A1
i . This means (Ai ⋅C)∣q0 = 2, i.e. C and Ai are tangent at q0. Moreover, since B1 ⋅Ai = 1

for i ≥ 2 and Ai ⋅ Aj = 1 for i ≠ j, there is no other conic in S such that its strict transform
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contains q1. Without loss of generality assume q1 = A1
5 ∩ F1.

Write D = aE1+bA2+Γ where a > 0, b ≥ 0, Ω = bA5+Γ, and E1,B1,A5 /⊆ Γ. Let yi = multqiΓ
i.

Then m0 = a + b + y0, m1 = b + y1 and mi = yi for i ≥ 2, since C1 ⋅A5
1 = 1. We note

2 − a ≥ A5 ⋅ Γ ≥ y0 + y1. (4.169)

The pair (4.166), at which some t2 ∈ F2 is not log canonical, may be rewritten as

(S2, (1− β)C2 +λβ(bA2
5 +Γ2) + (λβ(a+ b+ y0) − β)F 1

1 + (λβ(a+ 2b+ y0 + y1) − 2β)F2). (4.170)

Recall the curves constructed in section 3.3 and Table 3.3 using points p = q0 ∈ S0 and

q = q1 ∈ F1 ⊂ S1. We use these curves to define the Q-divisor

H = 3

5
A5 +

1

5
(R125 +R135 +R145) +

1

5
Q5 +

2

5
E1∼Q −KS .

We claim that all the curves used to define H are irreducible. It is enough to check it for

the cubics R125,R135,R145 and Q5. If any such cubic M was reducible, then it would split as

M = A5 + L, where L is a line, since q1 ∈ M1 and the only line or cubic such that its strict

transform contains q1 is A5. However by Lemma 3.3.2 and Table 3.3 there is no line L with

any of the following expected rational classes:

R125 −A5 ∼ E3 +E4 −E5, R135 −A5 ∼ E2 +E4 −E5,

R125 −A5 ∼ E2 +E3 −E5, Q5 −A5 ∼ π∗(OP2(1)) − 2E5.

By Lemma A.5.8, the pair (S, (1−β)C+λβH) is log canonical. Therefore by Lemma 2.3.8 we

may assume there is some irreducible component Hi ⊂ Supp(H) such that Hi /⊆ Supp(D). Since

E1 ⊆ Supp(D), then either Hi = A5 or Hi is one of the irreducible cubic curves in Supp(H).
Note that all these cubics have very similar numerical properties. In particular Hi ⋅A5 = 2 and

Hi ⋅E1 = 1. If A5 /⊂ Supp(D), then b = 0 and

a + 2b + y0 + y1 ≤ 2 ≤ 5

2
< 3

by (4.169). If Hi is a cubic as above, then

3 − a − 2b =Hi ⋅ Γ ≥ y0 + y1.

Therefore, we have proved that if q1 ∈ A5, then

a + 2b + y0 + y1 ≤ 3. (4.171)

If 0 < β ≤ 2
3
, then 3ω1β − 2β = β ≤ 2

3
< 1. If 2

3
≤ β1, then 3ω1β − 2β = 2 − 2β ≤ 2

3
< 1. Therefore,

using (4.171) we have proven

λωβ(a + 2b + y0 + y1) − 2β ≤ 1

and the pair (4.170) is log canonical in codimension 1. We analyse the position of t2 ∈ F2. For

this, notice that

A1
5Ċ

1 = F1 ⋅A1
5 = F1 ⋅C1 = 1
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which gives the following possibilities for t2:

(i) The point t2 ∈ F2 ∖ (A2
5 ∪H2

i ∪ F 2
1 ∪C2) and

(S2, λβΓ2 + (λβ(a + 2b + y0 + y1) − 2β)F2)

is not log canonical at t2.

(ii) The point t2 = F2 ∪A2
5 and

(S2, λβ(bA2
5 + Γ2) + (λβ(a + 2b + y0 + y1) − 2β)F2)

is not log canonical at t2.

(iii) The point t2 = F2 ∪ F 2
1 and

(S2, λβΓ2 + (λβ(a + b + y0) − 2β)F 2
1 + (λβ(a + 2b + y0 + y1) − 2β)F2)

is not log canonical at t2.

(ii) The point t2 = q2 = F2 ∪C2 and

(S2, (1 − β)C2 + λβΓ2 + (λβ(a + 2b + y0 + y1) − 2β)F2)

is not log canonical at t2.

For (i) and (ii) as above we may apply Lemma 2.3.9 with F2 and obtain a contradiction using

(4.159):

1 < λβ(bA2
5 + Γ2) ⋅ F2 = λβx1 <

3

2
ω1β ≤ 1.

In case (iii) we apply Lemma 2.3.9 (iii) with F 2
1 and obtain a contradiction via (4.157) and

(4.158):

1 <F 2
1 ⋅ (λβΓ + (λβ(a + 2b + y0 + y1) − 2β)F2) =

=λβ(y0 + y1 + a + 2b + y0 + y1) − 2β < ω1β(a + 2b + 2y0) − 2β ≤ 7

2
ω1β − 2β ≤ 1,

where for the last inequality we proceed as for (4.168).

Therefore only case (iv) is possible. By Lemma 2.3.5, the pair

(S3, (1 − β)C3 + λβΓ3 + (λβ(a + 2b + y0 + y1) − 2β)F 3
2 )

is not log canonical at some t3 ∈ F3 and log canonical near t3, which follows from

λβ(a + 2b + y0 + y1 + y2) − 3β < 9

2
ω1β − 3β ≤ 1,

where we apply (4.159) and (4.171). The last inequality follows from case analysis: if 0 < β ≤ 2
3
,

then 9
2
ω1β − 3β = 3

2
β ≤ 1. If 2

3
≤ β ≤ 1, then 9

2
ω1β − 3β = 3 − 3β ≤ 1.

We rule out possible positions for t3 ∈ F3. If t3 /∈ (F 3
2 ∪C3) ∩ F3, then

(S3, λβΓ3 + (λβ(a + 2b + y0 + y1 + y2) − 3β)F3)

146



is not log canonical and Lemma 2.3.9 (iii) with F3 gives

1 < λβΓ3 ⋅ F3 = λβy3 < ω1βx0 ≤
3

2
ω1β ≤ 1

by (4.159).

If t3 = F 3
2 ∩ F3, then t3 /∈ C3, but Lemma 2.3.9 (iii) with F 3

2 gives a contradiction

1 <F 3
2 ∩ (λβΓ3 + (λβ(a + 2b + y0 + y1 + y2) − 3β)F3)

=ω1β(a + 2b + 2y1 + y0) − 3β ≤ 9

2
ω1β − 3β ≤ 1

using (4.159) and (4.171).

Therefore t3 = F3 ∩C3 = q3. Lemma 2.3.9 (iii) applied with C3 gives

1 <C3 ⋅ (λβΓ3 + λβ(a + 2b + y0 + y1 + y2) − 3β)F3) =
=4λβ − 3β < 4ω1β − 3β ≤ 1.

which is impossible, hence the initial assumption of Step 3b, alas q1 ∈ A1
i for some i ≥ 2, is not

correct.

Step 4: We finish the proof. From steps 2 and 3 the pair

(S1, (1 − β)C1 + λβΩ1 + (λβ(a + x0) − β)F1)

is not log canonical at q1 = F1∩C1 and there is no conic or line Z in S such that q1 ∈ Z1. Recall

that Ω∼Q −KS − aE1 and xi = multqiΩ
i.

Let Q1 ∼ π∗(OP2(3)) − 2E1 −E2 −E3 −E4 −E5 be the cubic curve with q1 ∈ Q1
1. By Lemma

A.5.6 the pair (S, (1 − β)C + λβ(E1 +Q1)) is log canonical. Since there are no lines or conics

whose strict transform in S1 contains q1, the cubic Q1 is irreducible. Therefore by Lemma 2.3.8

we may assume that Q1 /⊆ Supp(D). Hence

3 = Q1 ⋅D ≥ a + x0 + x1. (4.172)

By Lemma 2.3.5, the pair

(S2, (1 − β)C2 + λβΩ2 + (λβ(a + x0) − β)F 2
1 + (λβ(a + x0 + x1) − 2β)F2)

is not log canonical at some t2 ∈ F2. Since (4.172) holds the pair is log canonical near t2. Indeed,

observe that

λβ(a + x0 + x1) − 2β < 3ω1β − 2β ≤ 1

where the last inequality follows by case analysis for β: if 0 < β ≤ 2
3
, then 3ω1β − 2β = β ≤ 2

3
< 1

and if 2
3
≤ β ≤ 1, then 3ω1β − 2β = 2 − 2β ≤ 2

3
< 1.

If t2 ≠ C2 ∩F2 = q2 and t2 ≠ F 2
1 ∩F2, then we apply Lemma 2.3.9 (iii) with F2 and obtain a

contradiction:

1 < (F2 ⋅ λβΩ2)∣t2 = λβx1 < ω1βx1 ≤ 1

by (4.159).
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If t2 = F 2
1 ∩ F2, then Lemma 2.3.9 (iii) with F 2

1 also gives a contradiction:

1 <(F 2
1 ⋅ (λβΩ2 + (λβ(a + x0 + x1) − 2β)F2))∣t2

<ω1β(a + 2x0) − 2β ≤ 7

2
ω1β − 2β ≤ 1 (4.173)

by (4.157) and (4.159). Hence t2 = C2 ∩ F2 = q2.

Applying Lemma 2.3.5, the pair

(S3, (1 − β)C3 + λβΩ3 + (λβ(a + x0 + x1) − 2β)F 3
2 + (λβ(a + x0 + x1 + x2) − 3β)F3)

is not log canonical at some t3 ∈ F3 and log canonical near t3. Indeed

λβ(a + x0 + x1 + x2) − 3β ≤ 7

2
ω1β − 3β < 7

2
ω1β − 2β ≤ 1

by by (4.172),(4.159) and (4.173).

If t3 ≠ C3 ∩F3 = q3 and t3 ≠ F 3
2 ∩F3, then we apply Lemma 2.3.9 (iii) with F3 and obtain a

contradiction:

1 < (F3 ⋅ (λβΩ3))∣t3 = λβx3 < ω1βx3 ≤ 1

by (4.159).

If t3 = F 3
2 ∩ F3, then Lemma 2.3.9 (iii) with F 3

2 also gives a contradiction:

1 <(F 3
2 ⋅ (λβΩ3 + (λβ(a + x0 + x1 + x2) − 3β)F3))∣t3

<ω1β(a + x0 + 2x1) − 3β ≤ 9

2
ω1β − 3β ≤ 1

by (4.172) and (4.159). The last inequality follows by case analysis. Indeed, if 0 < β ≤ 2
3
, then

9
2
ω1β − 3β = 3

2
β ≤ 1 and if 2

3
≤ β ≤ 1, then 9

2
ω1β − 3β = 3 − 3β ≤ 1. Hence t3 = C3 ∩ F3 = q3 and

(S3, (1 − β)C3 + λβΩ3 + (λβ(a + x0 + x1 + x2) − 3β)F3)

is not log canonical at q3. This is impossible by Lemma 2.3.9 (iii) with C3, finishing the proof:

1 < C3 ⋅ (λβΩ3 + (λβ(a + x0 + x1 + x2) − 3β)F3) <
ω1β(4 − a − x0 − x1 − x2 + a + x0 + x1 + x2) − 3β < 4ω1β − 3β ≤ 1.

The last inequality follows by case analysis. If 0 < β ≤ 2
3
, then 9

2
ω1β − 3β = 3

2
β ≤ 1. If 2

3
≤ β ≤ 1,

then 9
2
ω1β − 3β = 3 − 3β ≤ 1.

4.9 Smooth cubic surface

Theorem 4.9.1. Let S be a smooth del Pezzo surface of degree 3 and let C be a smooth elliptic

curve in S, C∼Q −KS. Suppose S contains at least an Eckardt point.
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(i) If for some Eckardt point p, we have p ∈ C then

α(S, (1 − β)C) = ω5 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + β
3β

for
1

2
≤ β ≤ 1.

(4.174)

(ii) If C contains no Eckardt points, then

α(S, (1 − β)C) = ω4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

(4.175)

Suppose S contains no Eckardt points.

(i) If p ∈ C for p ∈ B ∈ ∣ −KS ∣, where B = L +M , a line and an irreducible conic intersecting

only at p, then

α(S, (1 − β)C) = ω3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2 + β
4β

for
2

3
≤ β ≤ 1.

(4.176)

(ii) If for all B ∈ ∣ −KS ∣ where B = L +M , a line and an irreducible conic intersecting only

at pB, we have that pB /∈ C but there is an irreducible T ∈ ∣ −KS ∣ with a cuspidal point

pT ∈ T such that pT ∈ C and (T ⋅C)∣pT ,= 3 then

α(S, (1 − β)C) = ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2 + 3β

6β
for

2

3
≤ β ≤ 5

6
.

3

4β
for

5

6
≤ β ≤ 1.

(4.177)

(iii) In any other case

α(S, (1 − β)C) = ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 3

4
,

3

4β
for

3

4
≤ β ≤ 1.

(4.178)

Proof. Recall that S satisfies the Cat Property (Theorem 3.2.9).

Suppose S contains no Eckardt points. Then, by Lemma 3.2.7, all cats of S are either

rational curves T ∈ ∣ −KS ∣ with a cuspidal singularity at pT ∈ T and B = L +M , the union of a

line and a conic intersecting only at a point pB = L ∩M .

If pB /∈ C for all B as above and for all T as above such that pT ∈ C we have (C ⋅ T )pT = 2,

then

α(S, (1 − β)C) = min{1,
5

6β
,

3

4β
,
3 + 2β

6β
} = min{1,

3

4β
} = ω1

by Corollary 2.2.13 and lemmas A.6.1, A.6.3 and A.6.2.

If pB /∈ C for all B as above but for some T as above such that pT ∈ C we have (C ⋅T )∣pT = 3,

then

α(S, (1 − β)C) = min{1,
5

6β
,

3

4β
,
3 + 2β

6β
,
2 + 3β

6β
} = min{1,

3

4β
,
3 + 2β

6β
} = ω2
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by Corollary 2.2.13 and lemmas A.6.1, A.6.3 and A.6.2.

If pB ∈ C for some cat B as above, observe that (C ⋅ L) = 1 and that C and M cannot be

tangent at p, since then C and L would be tangent. Hence (C ⋅M)∣p = 1. Then

α(S, (1 − β)C) = min{1,
5

6β
,

3

4β
,
3 + 2β

6β
,
2 + 3β

6β
,
2 + β
4β

} = min{1,
2 + β
4β

} = ω3

by Corollary 2.2.13 and lemmas A.6.1, A.6.3, A.6.2 and A.6.4.

Suppose S contains at least an Eckardt point. Then, by Lemma 3.2.7, all cats of S are

rational curves T ∈ ∣ −KS ∣ with a cuspidal singularity at pT ∈ T and B = L +M , the union of

a line and a conic intersecting only at a point pB and A = L1 + L2 + L3, the union of 3 lines

intersecting at an Eckardt point pA.

If pA /∈ C for all A as above, then

α(S, (1 − β)C) = min{1,
5

6β
,

3

4β
,
3 + 2β

6β
,
2 + β
4β

,
2 + 3β

6β
,

2

3β
} = min{1,

2

3β
} = ω4

by Corollary 2.2.13 and lemmas A.6.1, A.6.3, A.6.2, A.6.4 and A.6.6.

If pA /∈ C for pA an Eckardt point of any A as above, then

α(S, (1 − β)C) = min{1,
5

6β
,

3

4β
,
3 + 2β

6β
,
2 + β
4β

,
2

3β
,
2 + 3β

6β
,
1 + β
3β

} = min{1,
1 + β
3β

} = ω5

by Corollary 2.2.13 and lemmas A.6.1, A.6.3, A.6.2, A.6.4, A.6.6 and A.6.5.

4.10 Del Pezzo surface of degree 2

Theorem 4.10.1. Let S be a smooth del Pezzo surface of degree 2 and let C be a smooth

elliptic curve in S, C∼Q −KS.

Suppose ∣ −KS ∣ contains at least one curve with a tacnodal singularity.

(i) If p ∈ C for p ∈ B ∈ ∣ −KS ∣, where B has a tacnodal singularity at p, then

α(S, (1 − β)C) = ω4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2 + β
4β

for
2

3
≤ β ≤ 1.

(4.179)

(ii) In any other case

α(S, (1 − β)C) = ω3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 3

4
,

3

4β
for

3

4
≤ β ≤ 1.

(4.180)

Suppose ∣ −KS ∣ contains no curves with a tacnodal singularity.

(i) If p ∈ C for p ∈ B ∈ ∣−KS ∣, where B is irreducible and has a cuspidal singularity at p, then

α(S, (1 − β)C) = ω2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 3

4
,

3 + 2β

6β
for

3

4
≤ β ≤ 1.

(4.181)
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(ii) In any other case

α(S, (1 − β)C) = ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 5

6
,

5

6β
for

5

6
≤ β ≤ 1.

(4.182)

Proof. Recall that S satisfies the Cat Property (Lemma 3.2.5).

Suppose ∣−KS ∣ contains no tacnodal curves. Then, by Lemma 3.2.6, all cats of S are rational

curves T ∈ ∣ −KS ∣ with a cuspidal singularity at pT ∈ T .

If pT /∈ C for all cats T , then

α(S, (1 − β)C) = min{1,
5

6β
} = ω1

by Corollary 2.2.13 and Lemma A.6.1.

If pT ∈ C for some irreducible cat T with a cuspidal singularity, observe that (T ⋅C)∣pT = 2,

since 2 ≥ (T ⋅C)∣pT ≥ multpT ≥ 2. Then

α(S, (1 − β)C) = min{1,
5

6β
,
3 + 2β

6β
} = min{1,

3 + 2β

6β
} = ω2

by Corollary 2.2.13 and Lemma A.6.3.

Suppose ∣ −KS ∣ contains at least a tacnodal curve. Then, by Lemma 3.2.6, all cats of S are

rational curves T ∈ ∣ −KS ∣ with a cuspidal singularity at pT ∈ T and tacnodal curves Q ∈ ∣ −KS ∣
with a tacnodal singularity pQ ∈ Q.

If pQ /∈ C for all tacnodal curves Q, then

α(S, (1 − β)C) = min{1,
3

4β
,
3 + 2β

6β
} = min{1,

3

4β
} = ω3

by Corollary 2.2.13, and lemmas A.6.3 and A.6.2.

If pQ ∈ C for some tacnodal curve Q = L +M , observe that L and M are lines. Therefore

L ⋅C = 1 and M ⋅C = 1. Therefore

α(S, (1 − β)C) = min{1,
2 + β
4β

,
3 + 2β

6β
} = min{1,

2 + β
4β

} = ω4

by Corollary 2.2.13, and lemmas A.6.3 and A.6.4.

4.11 Del Pezzo surface of degree 1

Theorem 4.11.1. Let S be a smooth del Pezzo surface of degree 1 and let C be a smooth

elliptic curve in S, C∼Q −KS. The dynamic α-invariant α(S, (1 − β)C) is as follows:

(i) If ∣ −KS ∣ contains a curve with a cuspidal rational curve, then

α(S, (1 − β)C) = ω2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 5

6
,

5

6β
for

5

6
≤ β ≤ 1.

(4.183)

(ii) In any other case

ω1 = α(S, (1 − β)C) = 1. (4.184)
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Proof. If ∣ − KS ∣ has no element with a cuspidal point, then lct(S, (1 − β)C,βT ) = 1 for all

T ∈ ∣ −KS ∣, since (S,T ) is log canonical by Lemma 3.2.3. Since S satisfies the Cat Property

(see Lemma 3.2.2), Observation 2.2.11 implies:

α(S, (1 − β)C) = lct(S, (1 − β)C,βT ) = ω1.

If ∃T ∈ ∣ −KS ∣ with a cuspidal singular point, then

1 = C ⋅ T ≥ multpC ⋅multpT = multpT

for any p ∈ C ∩T . Therefore T and C intersect with simple normal crossings. By Lemma A.6.1

lct(S, (1 − β)C,βT ) = 5
6β

. Since S satisfies the Cat Property (see Lemma 3.2.2), Observation

2.2.11 and Lemma 3.2.3 imply

α(S, (1 − β)C) = min{1, lct(S, (1 − β)C,βT )} = ω2.
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Appendix A

Local computations: log

canonical thresholds of pairs.

Many of the proofs in this thesis construct very specific effective divisors and Q-divisors in

order to apply Convexity (lemmas 2.3.7 and 2.3.8). In order to apply those lemmas, the pair

surface–divisor needs to be log canonical. The purpose of this Appendix is to show that all

specific pairs constructed are log canonical. Unless otherwise stated, given a pair (S,D) where

S is a surface and D a Q-divisor, we denote its minimal log resolution by f ∶ S̃ → S and the

strict transform of D in S̃ by D̃. If f decomposes in N blow-ups, the exceptional divisors of

f will be denoted by F1, . . . , FN . Usually F1, . . . , FN form a chain, i.e. Fi ⋅ Fj = 1 if and only

if ∣i − j∣ = 1, and Fi will be the exceptional curve obtained after blowing-up a point in Fi−1.

We will not explicitly justify the precise number of blow-ups required to obtain the minimal

log resolution, since we consider this should be obvious from the intersection matrix of the

irreducible prime divisors in Supp(D) and it would just clutter the argument. The thorough

reader is encouraged to draw a picture for each case. In some occasions the singularities of the

pair considered are not defined precisely. In that case we will show that, in the presence of the

worst possible discrepancy, the pair considered is log canonical.

A.1 Hirzebruch surface F1

Lemma A.1.1. Let S ≅ F1 be the blow-up of P2 at one point with exceptional curve E ⊂ S.

Let p ∈ S with C ∈ ∣ −KS ∣ = ∣π∗(OP2(3)) − E∣ smooth and p ∈ C. Let H ∈ ∣π∗(OP2(1))∣ such

that H is irreducible. Suppose ∃Lp ∈ ∣π∗(OP2(1))−E∣ with p ∈ Lp an irreducible curve such that

(Lp ⋅C)∣p = 1. Then the pair

(S, (1 − β)C + ω2β(2H +Lp)) (A.1)

is log canonical at p where

ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.
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Proof. Indeed the pair (A.1) is log canonical in codimension 1, since ω2β ≤ 1
3
. The worst

discrepancy takes place when (H ⋅ C)∣p = 3, so we assume this. The minimal log resolution

f ∶ Ŝ → S of (A.1) consists of three blow-ups over p with exceptional divisors F1, F2, F3 and log

pullback

f∗(KS + (1 − β)C + ω2β(2H +Lp))∼QKŜ + (1 − β)Ŝ + ω2β(2Ĥ + L̂p)
+ (3ω2β − β)F1 + (5ω2β − 2β)F2 + (7ω2β − 3β)F3.

If 0 < β ≤ 1
4
, then 3ω2β − β = 2β ≤ 1, 5ω2β − 2β = 3β ≤ 1 and 7ω2β − 3β = 4β ≤ 1.

If 1
4
≤ β ≤ 2

3
, then 3ω2β − β = 3(1+β)

5
− β = 3

5
− 2

5
β ≤ 1, 5ω2β − 2β = (1 + β) − 2β ≤ 1 and

7ω2β − 2β = 7(1+β)
5

− 2β = 7
5
− 8

5
β ≤ 1.

Finally, if 2
3
≤ β ≤ 1, then 3ω2β − β = 1 − β ≤ 1 and 5ω2β − 2β = 5

3
− 2β ≤ 1 and 7ω2β − 3β =

7
3
− 3β ≤ 1. Therefore (A.1) is log canonical.

A.2 Del Pezzo surface of degree 7

Recall Notation 4.5.1:

Notation. Let S be a del Pezzo surface of degree 7. By Lemma 3.1.12, the surface S is

unique up to isomorphism. By Lemma 3.1.21 there is a unique morphism π ∶ S → P2, up to

isomorphism, that contracts two (−1)-curves E1,E2 to points p1, p2 in P2. By Lemma 3.1.13

there is a unique line L ≠ E1,E2 with

L ∼ π∗(OP2(1)) −E1 −E2,

corresponding to the strict transform of the unique line in P2 passing through p1 and p2. We

have L ⋅E1 = L ⋅E2 = 1. Let C be a smooth curve, C ∈ ∣ −KS ∣. The curve C intersects each of

E1,E2 and L at precisely one point. At most two of these points coincide.

Let Li be the unique curve

Li ∼ π∗(OP2(1)) −Ei,

containing ri = Ei ∩C, for i = 1,2, which is precisely the strict transform of the unique line L̄i

in P2 tangent to C̄ = π∗(C) at pi. Let r = L ∩C and such that R be the unique curve passing

through r such that

R ∼ π∗(OP2(1))

and R is tangent to C at r.

Lemma A.2.1. Let q ∈ C ⊂ S be a point which does not belong to any (−1)-curve. Let Hi,

where i = 1,2, be the strict transform of the line in P2 through π(q) and pi. Let H be the strict

transform of a line in P2 such that H is tangent to C at q. The pair

(S, (1 − β)C + ω1β(H1 +H2 +H))

is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.
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Proof. Notice that H1 ⋅H2 = H ⋅H1 = 1, C ⋅H1 = C ⋅H2 = 2 and 3 ≥ (H ⋅C)∣q ≥ 2. Therefore, in

terms of computing discrepancies, the worst situation arises when (C ⋅H1)∣q = 1, (C ⋅H2)∣q = 1

and (C ⋅H)∣q = 3. The minimal log resolution f ∶ S̃ → S of the pair (S, (1−β)C+ω1β(H1+H2+H))
consists of 3 blow-ups over q with exceptional curves F1, F2, F3. The log pullback is

f∗(KS + (1 − β)C + ω1β(H1 +H2 +H))∼QKS̃ + (1 − β)C̃ + ω1β(H̃1 + H̃2 + H̃)
+ (3ω1β − β)F1 + (4ω1β − 2β)F2 + (5ω1β − 3β)F3.

Observe that 3ω1β − β ≤ 1 − β < 1. If 0 < β ≤ 1
3
, then 4ω1β − 2β = 2β ≤ 2

3
< 1 and 5ω1β − 3β =

2β ≤ 2
3
< 1. Finally if 1

3
≤ β ≤ 1, then 4ω1β − 2β = 4

3
− 2β ≤ 2

3
< 1 and 5ω1β − 3β ≤ 5

3
− 3β ≤ 2

3
< 1.

We conclude that (S, (1 − β)C + ω1β(H1 +H2 +H)) is log canonical.

Lemma A.2.2. Let q ∈ C ⊂ S be a point which does not belong to any (−1)-curve. Let Hi,

where i = 1,2, be the strict transform of the line in P2 through π(q) and pi. Assume H1 is

tangent to C at q. The pair

(S, (1 − β)C + ω1β(2H1 +H2 +E1))

is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

Proof. Notice that H1 ⋅H2 = E1 ⋅H1 = 1, H2 ⋅E1 = 0, q /∈ E1, E1 ⋅C = 1 and C ⋅H1 = C ⋅H2 = 2.

Therefore, in terms of computing discrepancies, the worst situation arises when (C ⋅H1)∣q = 2 and

(C ⋅H2)∣q = 1. The minimal log resolution f ∶ S̃ → S of the pair (S, (1−β)C+ω1β(2H1+H2+E1))
consists of 2 blow-ups over q with exceptional curves F1, F2. The log pullback is

f∗(KS + (1 − β)C + ω1β(2H1 +H2 +E1))∼QKS̃ + (1 − β)C̃ + ω1β(2H̃1 + H̃2 + Ẽ1)
+ (3ω1β − β)F1 + (5ω1β − 2β)F2.

Observe that 3ω1β − β ≤ 1 − β < 1. If 0 < β ≤ 1
3
, then 5ω1β − 2β = 3β ≤ 1. If 1

3
≤ β ≤ 1, then

5ω1β − 2β = 5
3
− 2β ≤ 1. We conclude that (S, (1 − β)C + ω1β(2H1 +H2 +E1)) is log canonical.

Lemma A.2.3. Suppose q ∈ C ⊂ S is a point which does not belong to any (−1)-curve. Let

H ∈ ∣π∗(OP2(1))∣ be the unique curve such that q ∈ H and q1 ∈ H1, where q1 ∈ F1 ⊂ S1, the

blow-up of q and H1 is the strict transform of H. Suppose H is irreducible. Then the pair

(S, (1 − β)C + ω1β(2H +L))

is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

Proof. Notice that H ⋅ L = L ⋅ C = 1 and 3 ≥ (H ⋅ C)∣q ≥ 2. Therefore, in terms of computing

discrepancies, the worst situation arises when (C ⋅H)∣q = 3. The minimal log resolution f ∶ S̃ → S
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of the pair (S, (1 − β)C + ω1β(2H + L)) consists of 3 blow-ups over q with exceptional curves

F1, F2, F3. The log pullback is

f∗(KS + (1 − β)C + ω1β(2H +L))∼QKS̃ + (1 − β)C̃ + ω1β(2H̃ + L̃)
+ (2ω1β − β)F1 + (4ω1β − 2β)F2 + (6ω1β − 3β)F3.

Observe that 2ω1β−β ≤ 1−β < 1. If 0 < β ≤ 1
3
, then 4ω1β−2β = 2β ≤ 2

3
< 1 and 6ω1β−3β = 3β ≤ 1.

Finally if 1
3
≤ β ≤ 1, then 4ω1β − 2β = 4

3
− 2β ≤ 2

3
< 1 and 6ω1β − 3β ≤ 2 − 3β ≤ 1. We conclude

that (S, (1 − β)C + ω1β(H1 +H2 +H)) is log canonical.

Lemma A.2.4. If (R ⋅C)∣r = 3, then the pair

(S, (1 − β)C + ω2β(L + 2R))

is log canonical where

ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 3β

7β
for

1

4
≤ β ≤ 4

9
,

1

3β
for

4

9
≤ β ≤ 1.

If (R ⋅C)∣r = 2, then the pair

(S, (1 − β)C + ω1β(L + 2R))

is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

Proof. Let f ∶ S̃ → S be the minimal log resolution of the pair (S, (1− β)C +ωiβ(L+ 2R)). The

exceptional locus of f is a chain of exceptional curves with centre r.

If (C ⋅R)∣r = 2, then Exc(f) = F1 ∪ F2 and the log pullback is

f∗(KS + (1 − β)C + ω1β(L + 2R))∼QKS̃ + (1 − β)C̃ + ω2β(L̃ + 2R̃)
+ (3ω1β − β)F1 + (5ω1β − 2β)F2.

If 0 < β ≤ 1
3
, then 3ω1β−β = 2β ≤ 1 and 5ω1β−2β = 3β ≤ 1. If 1

3
< β ≤ 1, then 3ω1β = 1−β ≤ 1

and 5ω1β − 2β ≤ 5
3
− 2β ≤ 1.

Therefore (S, (1 − β)C + ω1β(L + 2R)) when (C ⋅R)∣r = 2. If (C ⋅R)∣r = 3, then Exc(f) =
F1 ∪ F2 ∪ F3 and the log pullback is

f∗(KS + (1 − β)C+ω2β(L + 2R))∼QKS̃ + (1 − β)C̃ + ω2β(L̃ + 2R̃)
+ (3ω2β − β)F1 + (5ω2β − 2β)F2 + (7ω2β − 3β)F3.

If 0 < β ≤ 1
4
, then 3ω2β − β = 2β ≤ 1, 5ω2β − 2β = 3β ≤ 1 and 7ω2β − 3β = 4β ≤ 1. If 1

4
≤ β ≤ 4

9

then 3ω2β − β = 3
7
+ 2

7
β ≤ 1, 5ω2β − 2β = 5

7
+ β

7
≤ 45+4

63
≤ 1 and 7ω2β − 3β = 1 + 3β − 3β = 1. If

4
9
≤ β ≤ 1, then 3ω2β − β = 1 − β ≤ 1, 5ω2β − 2β = 5

3
− 2β ≤ 7

9
≤ 1 and 7ω2β − 3β ≤ 7

3
− 3β ≤ 1.
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Therefore (S, (1 − β)C + ω2β(L + 2R)) when (C ⋅R)∣r = 3.

Lemma A.2.5. If (L1 ⋅C)∣r1 = 2, then the pair

(S, (1 − β)C + ω3β(2L1 +L + 2E1))

is log canonical where

ω3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1

2
,

1

3β
for

1

2
≤ β ≤ 1.

If (L1 ⋅C)∣r1 = 1, then the pair

(S, (1 − β)C + ω1β(2L1 +L + 2E1))

is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

Proof. Let f ∶ S̃ → S be the minimal log resolution of the pair

(S, (1 − β)C + ωiβ(2L1 +L + 2E1)).

The exceptional locus of f is a chain of exceptional curves with centre r1.

If (L1 ⋅C)∣r1 = 2, then Exc(f) = F1 ∪ F2 and the log pullback is

f∗(KS + (1 − β)C + ω3β(2L1 +L + 2E1))∼QKS̃ + (1 − β)C̃ + ω3β(2L̃1 + L̃ + 2Ẽ1)
+ (4ω3β − β)F1 + (6ω3β − 2β)F2.

If (L1 ⋅C)∣r1 = 1, then Exc(f) = F1 and the log pullback is

f∗(KS + (1 − β)C + ω1β(2L1 +L + 2E1))∼QKS̃ + (1 − β)C̃
+ ω1β(2L̃1 + L̃ + 2Ẽ1) + (4ω1β − β)F1.

If 0 < β ≤ 1
3
, then 4ω1β − β = 3β ≤ 1. If 1

3
≤ β ≤ 1, then 4ω1β − β = 4

3
− β ≤ 1.

If 0 < β ≤ 1
4
, then 4ω3β − β = 3β ≤ 1 and 6ω3β − 2β = 4β ≤ 1. If 1

4
≤ β ≤ 1

2
, then

4ω3β − β = 2+4β
3

− β = 2
3
+ 1

3
β ≤ 1 and 6ω3β − 2β = 1 + 2β − 2β = 1. If 1

2
≤ β ≤ 1, then

4ω3β − β = 4
3
− β ≤ 1 and 6ω3β − 2β = 2 − 2β ≤ 1.

Therefore (S, (1 − β)C + ω1β(2L1 + L + 2E1)) is log canonical when (L1 ⋅ C)∣r1 = 1 and

(S, (1 − β)C + ω3β(2L1 +L + 2E1)) is log canonical when (L1 ⋅C)∣r1 = 2.
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A.3 Del Pezzo surface of degree 6

We recall the notation from section 4.6. Let S be a non-singular del Pezzo surface of degree

6. Given any model π∶S → P2 we have exceptional curves E1,E2,E3 ⊂ S mapping to points

p1, p2, p3 ∈ P2, respectively. The other 3 lines in S (see Lemma 3.1.13) correspond to strict

transforms of lines in P2 through pi, pj . We will denote them by

Lij ∼ π∗(OP2(1)) −Ei −Ej for 1 ≤ i < j ≤ 3.

For each C, we define the following functions with variable β ∈ (0,1]:

(i) If C contains a pseudo-Eckardt point of S, then

ω3 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + β
4β

for
1

3
≤ β ≤ 1.

(A.2)

(ii) If C contains no pseudo-Eckardt points but there is a model π∶S → P2 such that through

p = C ∩E1 there is a smooth rational curve L ∼ π∗(OP2(1)) −E1 satisfying (C ⋅ L)∣p = 2,

then

ω2 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + 2β

5β
for

1

3
≤ β ≤ 3

4
,

1

2β
for

3

4
≤ β ≤ 1.

(A.3)

(iii) If C contains no pseudo-Eckardt points and for all models π∶S → P2 the unique irreducible

curve L ∈ ∣π∗(OP2(1)) −E1∣ passing through p = C ∩E1 has simple normal crossings with

C (i.e. (C ⋅L)∣p = E1), then

ω1 ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(A.4)

Lemma A.3.1. Let q0 ∈ C be a point not lying in any (−1)-curve of S. Let L2 be the unique

curve such that

L2 ∈ ∣π∗(OP2(1)) −E2∣ with q0 ∈ L2

The pair

(S, (1 − β)C + ω1β(L13 + 2L2 +E2)) (A.5)

is log canonical.

Proof. Since ω1β ≤ 1
2
, the pair (A.5) is log canonical in codimension 1. Since L2 ⋅L13 = L2 ⋅E2 = 1

and L13 ⋅ E2 = 0, the worse discrepancy takes place if (L2 ⋅ C)∣q0 = 2. The the minimal log

resolution of (A.5), f ∶ S̃ → S consists of two blow-ups over q0 and the log pullback is

f∗(KS + (1 − β)C + ω1β(L13 + 2L2 +E2))∼QKS̃ + (1 − β)C̃ + ω1β(L̃13 + 2L̃2 + Ẽ2)
+ (2ω1β − β)F1 + (3ω1β − 2β)F2.
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Clearly 2ω1β − β ≤ 2ω1β ≤ 1 and 3ω1β − β ≤ 1. Indeed if 0 < β ≤ 1
2
, then 3ω1β − 2β = β ≤ 1 and

if 1
2
≤ β ≤ 1, then 3ω1β − 2β ≤ 3

2
− 2β ≤ 1. Therefore (A.5) is log canonical.

Lemma A.3.2. Let q0 ∈ C be a point not lying in any (−1)-curve of S. Let Li be the unique

curve such that

Li ∈ ∣π∗(OP2(1)) −Ei∣ with q0 ∈ Li for i = 1,2,3. (A.6)

The pair

(S, (1 − β)C + ω1β(L1 +L2 +L3)) (A.7)

is log canonical.

Proof. Observe that Li ⋅ Lj = 1 for i ≠ j. Since C ⋅ Li = 2 for all i, C can be at most tangent

to one Li. Without loss of generality suppose that (C ⋅ L1)∣q0 = 2. The minimal log resolution

f ∶ S̃ → S of (A.7) consists of two blow-ups over q0. Let B = L1 +L2 +L3. The log pullback is

f∗(KS + (1 − β)C + ω1βB)∼Q −KS̃ + (1 − β)C̃ + ω1βB̃

+ (3ω1β − β)F1 + (4ω1β − 2β)F2.

If 0 < β ≤ 1
2
, then 3ω1β − β = 2β ≤ 1 and 4ω1β − 2β = 2β ≤ 1.

If 1
2
≤ β ≤ 1, then 3ω1β − β = 3

2
− β ≤ 1 and 4ω1β − 2β ≤ 2 − 2β ≤ 1.

Therefore (A.7) is log canonical.

Lemma A.3.3. Let q0 ∈ C be a point not lying in any (−1)-curve of S. Let H ∼ π∗(OP2(1))
and G ∼ π∗(OP2(2)) −E1 −E2 −E3 be irreducible curves passing through q0. The pair

(S, (1 − β)C + ω1β(G +H)) (A.8)

is log canonical.

Proof. Since G ⋅H = 2 and G ⋅C =H ⋅C = 3, the worst discrepancy for pair (A.8) happens when

(G ⋅H)∣q0 = (G ⋅ C)∣q0 = 2 and (H ⋅ C)∣q0 = 3. The minimal log resolution f ∶ S̃ → S of (A.8)

consists of 3 blow-ups over q0. The log pullback is

f∗(KS + (1 − β)C + ω1β(G +H))∼Q −KS̃ + (1 − β)C̃ + ω1β(G̃ + H̃) + (2ω1β − β)F1

+ (4ω1β − 2β)F2 + (5ω1β − 3β)F3.

If 0 < β ≤ 1
2
, then 2ω1β − β = β ≤ 1

2
≤ 1, 4ω1β − 2β = 2β ≤ 1 and 5ω1β − 3β = 2β ≤ 1.

If 1
2
≤ β ≤ 1, then 2ω1β − β = 1 − β ≤ 1, 4ω1β − 2β ≤ 2 − 2β ≤ 1 and 5ω1β − 3β = 5

2
− 3β ≤ 1.

Therefore (A.8) is log canonical.

Lemma A.3.4. Let q0 = C ∩E1 and such that q0 does not belong to any other (−1)-curve of

S. Let Lq ∼ π∗(OP2(1)) −E1 and Cq ∼ π∗(OP2(2)) −E1 −E2 −E3 be irreducible curves passing

through q0. Let B = E1 +Lq +Cq. The pair

(S, (1 − β)C + ω1βB) (A.9)

is log canonical.
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Proof. Observe that E1 ⋅Lq = Cq ⋅Lq = E1 ⋅Cq = C ⋅E1 = 1.

If (Lq ⋅ C)∣q0 = 1, let σ∶ S̃,→ S be the minimal log resolution of the pair (A.9). The worst

multiplicities arise when (Cq ⋅ C)∣q0 = 2. We consider just this case. Then σ consists of 2

blow-ups with exceptional divisors F1 and F2. The log pullback is

σ∗(KS + (1 − β)C + ω1βB) =KS̃ + (1 − β)C̃ + ω1βB̃ + (3ω1β − β)F1 + (4ω1β − 2β)F2.

If 0 < β ≤ 1
2
, then 3ω1β−β = 2β ≤ 1 and 4ω1β−2β = 2β ≤ 1. If 1

2
≤ β ≤ 1, then 3ω1β−β = 3

2
−β ≤ 1

and 4ω1β − 2β = 2 − 2β ≤ 1.

If (Lq ⋅ C)∣q0 = 2, let σ∶ S̃,→ S be the minimal log resolution of the pair (A.9). Since Lq is

tangent to C at q0 but Lq ⋅Cq = 1, then (Cq ⋅C)∣q0 = 1. Therefore σ consists of 2 blow-ups with

exceptional divisors F1 and F2. The log pullback is

σ∗(KS + (1 − β)C + ω1βB) =KS̃ + (1 − β)C̃ + ω1βB̃ + (3ω1β − β)F1 + (4ω1β − 2β)F2.

If 0 < β ≤ 1
2
, then 3ω1β−β = 2β ≤ 1 and 4ω1β−2β = 2β ≤ 1. If 1

2
≤ β ≤ 1, then 3ω1β−β = 3

2
−β ≤ 1

and 4ω1β − 2β = 2 − 2β ≤ 1.

Lemma A.3.5. Let Lq ∼ π∗(OP2(1)) − E1 be an irreducible curve passing through a point

q = C ∩E1, not lying in any other (−1)-curve. Suppose (Lq ⋅C)∣q = 2. Let B = 2Lq + L23 +E1.

The pair

(S, (1 − β)C + ω2βB) (A.10)

is log canonical.

Proof. Since L23 ⋅ Lq = Lq ⋅E1 = L23 ⋅C = E1 ⋅C = 1 and L23 ⋅E1 = 0 then Supp(B) has simple

normal crossings.

The minimal log resolution f ∶ S̃ → S of (A.11) consists of two blow-ups over p. The log

pullback is

f∗(KS + (1 − β)C + ω1βB)∼Q −KS̃ + (1 − β)C̃ + ω1βB̃ + (3ω1β − β)F1 + (5ω1β − 2β)F2.

If 0 < β ≤ 1
3
, then 3ω1β−β = 2β ≤ 1 and 5ω1β−2β = 3β ≤ 1. If 1

3
≤ β ≤ 3

4
, then 3ω1β−β = 3

5
+ 1

5
β ≤ 3

4

and 5ω1β−2β = 1. Finally, if 3
4
≤ β ≤ 1, then 3ω1β−β = 3

2
−β = 3

4
< 1 and 5ω1β−2β = 5

2
−2β ≤ 1.

Therefore the pair (A.10) is log canonical.

Lemma A.3.6. Let Lq ∼ π∗(OP2(1)) − E1 be an irreducible curve passing through a point

q = C ∩E1, not lying in any other (−1)-curve. Let B = Lq +L12 +L13 + 2E1. The pair

(S, (1 − β)C + ω1βB) (A.11)

is log canonical.

Proof. Since L1j ⋅ L1k = 0 for j ≠ k, Lq ⋅ L1j = 0 for all j, Lq ⋅E1 = 1 and L1j ⋅E1 = 1 for all j,

then Supp(B) has simple normal crossings.

Since C ⋅ L1j = C ⋅ E1 = 1 for all j and C ⋅ Lq = 2, then C intersects at most either Lq

and E1 at the same point with (C ⋅ Lq)∣q0 ≤ 2 or L1j and E1 at the same point. The worst

discrepancy appears in the former case. Without loss of generality assume that (C ⋅ Lq)∣q0 = 2
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and C∩Lq∩E1 = q. Then the minimal log resolution f ∶ S̃ → S of (A.11) consists of two blow-ups

over q. The log pullback is

f∗(KS + (1 − β)C + ω1βB)∼Q −KS̃ + (1 − β)C̃ + ω1βB̃ + (3ω1β − β)F1 + (4ω1β − 2β)F2.

If 0 < β ≤ 1
2
, then 3ω1β−β = 2β ≤ 1 and 4ω1β−2β = 2β ≤ 1. If 1

2
≤ β ≤ 1, then 3ω1β−β = 3

2
−β ≤ 1

and 4ω1β − 2β = 2 − 2β ≤ 1.

Since ω1β ≤ 1
2
, then the pair (A.11) is log canonical.

A.4 Del Pezzo surface of degree 5

Lemma A.4.1. Let S be a non-singular del Pezzo surface, with K2
S = 5. Let A be an irreducible

conic in

A = ∣π∗(OP2(2)) −E1 −E2 −E3 −E − 4∣

with q0 ∈ A. Let B1 ∼ π∗(OP2(1))−E1, C ∼ −KS be irreducible smooth curves with (C ⋅B1)∣q0 = 2.

Assume q0 ∈ E1. Let β ∈ (0,1]. The pair

(S, (1 − β)C + ωβ(A +B1 +E1))

is log canonical where

ω =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

2

3β
for

1

2
≤ β ≤ 1.

Proof. Since

A ⋅E1 = B1 ⋅E1 = A ⋅B1 = C ⋅E1 = 1

and (C ⋅B1)∣q0 = 2, then (C cotA)∣p = 1. Therefore the minimal log resolution S̃ → S consists of

2 blow-ups over q0 with exceptional divisors F1, F2. Let D = A +B1 +E1. The log pullback is

f∗(KS + (1 − β)C + ωβD)∼QKS̃ + (1 − β)C̃ + ωβD̃ + (3ωβ − β)F1 + (4ωβ − 2β)F2.

If 0 < β ≤ 1
2
, then 3ωβ − β = 2β ≤ 1 and 4ωβ − 2β = 2β ≤ 1. If 1

2
≤ β ≤ 1, then 3ωβ − β = 3

2
− β ≤ 1

and 4ωβ − 2β = 2 − 2β ≤ 1. Therefore the pair is log canonical.

A.5 Del Pezzo surface of degree 4

Lemma A.5.1. Let S be a smooth del Pezzo surface, with K2
S = 4. Let L1 + L2 +Q ∼ −KS be

two lines and an irreducible conic, respectively, intersecting at a point p. Let C be a smooth

hyperplane section not passing through p. Then

lct(S, (1 − β)C,β(L1 +L2 +Q)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

Proof. Let σ ∶ S1 → S be the blow-up of p with exceptional divisor E1. From the log pullback

σ∗(KS + (1 − β)C + λβ(L1 +L2 +Q))∼QKS1 + (1 − β)C̃ + λβ(L̃1 + L̃2 + Q̃) + (3λβ − 1)E,
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we conclude that

(S, (1 − β)C + λβ(L1 +L2 +Q)) (A.12)

is log canonical at p if and only if λ ≤ min{1, 2
3β

}, given that L1 ⋅L2 = C ⋅Li = 1 gives us simple

normal crossings in the blow-up. Note that C ⋅Li = 1 so the components of σ−1({L1∪L2∩Q∩C})
have simple normal crossings unless C ∩Q = {p′}, consists of one point only. Suppose that is

the case, and let σ′ ∶ S2 → S be the repeated blow-up to resolve (S,C +Q). Let E1,E2 be the

exceptional divisors. Since p′ /∈ Li, then the pair (A.12) is log canonical at p′ if and only if

(S, (1 − β)C + λβQ) is. We have

(σ′)∗(KS +(1−β)C +λβ(L1 +L2 +Q))∼QKS2 +(1−β)C̃ +λβQ̃+(β(λ− 1))E1 +(2β(λ− 1))E2,

so (S, (1 − β)C + λβQ) is log canonical for λ ≤ 1 and any β ∈ [0,1]. Since

lct(S, (1 − β),D) = min
p∈S

{lctp(S, (1 − β),D)},

the result follows.

Lemma A.5.2. Let S be a smooth del Pezzo surface, with K2
S = 4. Let T = A + B ∼ −KS

be the union of two irreducible conics intersecting only at a point p ∈ C, where C is a smooth

hyperplane section. Then lct(S, (1 − β)C,β(T )) = λ where λ = 1 for (C ⋅A)∣p = 1 and

λ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + 2β

4β
for

1

2
≤ β ≤ 1.

for (C ⋅A)∣p = (C ⋅B)∣p = 2.

Proof. Let D = (1−β)C +λβ(A+B). Since A and B are conics in local coordinates x, y around

p we can give them local equations

A∶ {y − x2 = 0} B∶ {y + x2 = 0}

to satisfy the hypothesis in the statement. If (C ⋅A)∣p = 1, then (C ⋅B)∣p = 1, since A and B

are tangent to each other. Therefore the local equation for C can be taken to be

C ∶ {x = 0}

when (C ⋅A)∣p = 1 or

C ∶ {y = 0}

when (C ⋅A)∣p = 2. In both cases the minimal log resolution f ∶ S̃ → S of (S,D = (1−β)C+λβ(T ))
consists of 2 blow-ups. In the first case the discrepancies are

f∗(KS +D) =KS̃ + D̃ + β(2λ − β)E1 + (β(4λ − β) − 1)E2.

In the second case the discrepancies are

f∗(KS +D) =KS̃ + D̃ + β(2λ − β)E1 + (β(4λ − 2))E2.
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In each case Disc(S,D) = −1.

Lemma A.5.3. Let S be a smooth del Pezzo surface, with K2
S = 4. Let L1, L2,Q be two lines

and an irreducible conic, respectively, intersecting at a point p and such that L1+L2+Q ∼ −KS.

Let C be a smooth hyperplane section such that p ∈ C. Then

lct(S, (1 − β)C,β(L1 +L2 +Q)) = λ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + β
3β

for
1

2
≤ β ≤ 1.

Proof. Let D = (1−β)C+λβ(L1+L2+Q). There are two different situations to consider. Either

(C ⋅Q)∣p = 1 or (C ⋅Q)∣p = 2. However, the log canonical threshold is the same, since the worst

discrepancy is reached after the first blow-up. Indeed, suppose we are in the second case. The

minimal log resolution f ∶ S̃ → S of (S,D) consists of 2 consecutive blow-ups. The log pullback

is

f∗(KS+(1−β)C+λβ(L1+L2+Q))∼QKS̃+(1−β)C̃+λβ(L̃1+L̃2+Q̃)+β(3λ−1)E1+β(4λ−2)E2.

Note that Disc(S,D) = Disc(S,D,E1) = −1.

Lemma A.5.4. Let S be a smooth del Pezzo surface, with K2
S = 4. Let T ∼ −KS be an

irreducible curve with a cusp at some point p ∈ C, where C is a smooth hyperplane section.

Then the pair (S, (1 − β)C + λβT ) is log canonical where

λ <

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

Proof. Let D = (1−β)C +λβT . From Lemma 3.1.19 h0(S,OS(−KS)) = 5. Therefore any curve

passing through p ∈ S with local coordinates x, y has a local equation

0 = ax + by + cxy + dx2 + y2 + higher order terms, (A.13)

where only 3 parameters in {a, b, c, d} are free. Indeed the linear system C ⊂ ∣ −KS ∣ of curves

passing through p has projective dimension 5− 1− 1 = 3. The local equation for T is y2 +x3 = 0

corresponding to all values in (A.13) vanishing. Since C is smooth its local equation in (A.13)

has values a ≠ 0 or b ≠ 0. After blowing up p the strict transforms of T and C do not intersect

unless the local equation of C around p is y = 0. This would give a lower discrepancy, hence

we suppose this. Let f ∶ S̃ → S be the minimal log resolution of (S,D), which consists of 3

blow-ups. The discrepancies are:

f∗(KS +D) =KS̃ + (1 − β)C̃ + λβT̃ + β(2λ − 1)E1 + β(3λ − 2)E2 + (β(6λ − 3) − 1)E3,

and Disc(S,D) ≤ −1 for λ as in the hypothesis.

Lemma A.5.5. Let S be a smooth del Pezzo surface, with K2
S = 4. Let E1 be a line and q0 ∈ E1

a point such that no line other than E1 contains it. Let C ∈ ∣ −KS ∣ a smooth hyperplane section
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with q0 ∈ C. Let

G = 1

3
B1 +

1

3

5

∑
i=2

Ai +
2

3
E1∼Q −KS

for irreducible curves as in Table 3.3, such that q0 ∈ B1 ∩Ai for all i = 2, . . . ,5. Then the pair

(S, (1 − β)C + λβG) is log canonical where

λ <

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

Proof. Notice that Ai ⋅ Aj = 1 for i ≠ j. Moreover Ai ⋅ B1 = Ai ⋅ E1 = 1 for i = 2, . . . ,5 and

B1 ⋅ E1 = 1. Since Ai ⋅ C = B1 ⋅ C = 2, then C can be tangent to at most one conic Ai or B1.

Without loss of generality assume that (C ⋅B1)∣q0 = 2 and (C ⋅Ai)∣q0 = 1 for i = 2, . . . ,5. The

minimal log resolution of the pair (S, (1 − β)C + λβG) consists of two blow-ups over q0. The

log pullback is

f∗(KS + (1 − β)C + λβG)∼QKS̃ + (1 − β)C̃ + λβG̃ + (7

3
λβ − β)F1 + (8

3
λβ − 2β)F2.

If 0 < β ≤ 2
3
, then 7

3
λβ − β < 4

3
β ≤ 8

9
≤ 1, and 8

3
λβ − 2β < 2

3
β ≤ 1.

If 2
3
≤ β ≤ 1, then 7

3
λβ − β < 14

9
− β ≤ 8

9
≤ 1, and 8

3
λβ − 2β < 16

9
− 2β ≤ 4

9
≤ 1.

Therefore (S, (1 − β)C + λβG) is log canonical.

Lemma A.5.6. Let S be a smooth del Pezzo surface, with K2
S = 4. Let E1 be a line and q0 ∈ E1

a point such that no line other than E1 contains it. Let C ∈ ∣ −KS ∣ a smooth hyperplane section

with q0 ∈ C. Let Q1 ∼ π∗(OP2(3))−2E1−∑5
i=2Ei be a smooth irreducible cubic such that q0 ∈ Q1.

Then the pair (S, (1 − β)C + ω1β(Q1 +E1)) is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

Proof. Note that Q1 ⋅ E1 = 2, Q1 ⋅ C = 3 and E1 ⋅ C = 1. Therefore if (Q1 ⋅ E1)∣q0 = 2, then

(Q1 ⋅C)∣q0 = 1 and if 3 ≥ (Q1 ⋅C)∣q0 ≥ 2, then (Q1 ⋅E1)∣q0 = 1.

Suppose (Q1 ⋅E1)∣q0 = 2. Then (Q1 ⋅E1)∣q0 = 1 since C ⋅E1 = 1 and the minimal log resolution

f ∶ S̃ → S of (S, (1 − β)C + ω1β(Q1 +E1)) consists of two blow-ups over q0. The log pullback is

f∗(KS + (1 − β)C + ω1β(Q1 +E1))∼Q −KS̃ + (1 − β)C̃ + ω1β(Q̃1 + Ẽ1)
+ (2ω1β − β)F1 + (4ω1β − β − 1)F2.

If 0 < β ≤ 2
3

then 2ω1β − β = β ≤ 2
3
< 1 and 4ω1β − β − 1 = 3β − 1 ≤ 1. If 2

3
≤ β ≤ 1 then

2ω1β−β = 4
3
−β ≤ 2

3
< 1 and 4ω1β−β−1 = 5

3
−β ≤ 1. Therefore the pair (S, (1−β)C+ω1β(Q1+E1))

is log canonical.

Suppose (Q1 ⋅C)∣q0 = 3. Then the minimal log resolution f ∶ S̃ → S of the pair (S, (1−β)C +
ω1β(Q1 +E1)) consists of three blow-ups over q0. The log pullback is

f∗(KS + (1 − β)C + ω1β(Q1 +E1))∼Q −KS̃ + (1 − β)C̃ + ω1β(Q̃1 + Ẽ1)+
(2ω1β − β)F1 + (3ω1β − 2β)F2 + (4ω1β − 3β)F3.
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If 0 < β ≤ 2
3
, then 2ω1β − β = β ≤ 2

3
≤ 1, 3ω1β − 2β = β ≤ 2

3
≤ 1 and 4ω1β − 3β = β ≤ 2

3
≤ 1.

If 0 < β ≤ 2
3
, then 2ω1β−β = 4

3
−β ≤ 2

3
≤ 1, 3ω1β−2β = 2−2β ≤ 2

3
≤ 1 and 4ω1β−3β = 8

3
−3β ≤

2
3
≤ 1.

Therefore the pair (S, (1 − β)C + ω1β(Q1 +E1)) is log canonical.

Lemma A.5.7. Let S be a smooth del Pezzo surface, with K2
S = 4. Let E1 be a line and q0 ∈ E1

a point such that no line other than E1 contains it. Let C ∈ ∣ −KS ∣ a smooth hyperplane section

with q0 ∈ C. Consider the lines of S with the notation of Table 3.3. Let

B = 1

2
C0 +

1

2
(L12 +L13 +L14 +L15) +

3

2
E1∼Q −KS .

Then the pair (S, (1 − β)C + ω1βB) is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

Proof. Observe that C0 ⋅L1j = L1j ⋅L1i = 0 for all i ≠ j and that

E1 ⋅L1j = C0 ⋅E1 = C ⋅C0 = C ⋅L1j = C ⋅E1 = 1.

Therefore the worst discrepancy is achieved when C intersects the E1 at the point q0 = E1 ∩L
for L a line, L ≠ E1 and L ⊂ Supp(B). Without loss of generality assume q0 = E1 ∩ C0 ∩ C.

Then the minimal log resolution f ∶ S̃ → S of (S, (1−β)C +ω1βB) consists of the blow-up of q0.

The log pullback is

f∗(KS + (1 − β)C + ω1βB)∼QKS̃ + (1 − β)C̃ + ω1βB̃ + (2ω1β − β)F1.

If 0 < β ≤ 2
3
, then 2ω1β − β = β ≤ 2

3
≤ 1.

If 2
3
≤ β ≤ 1, then 2ω1β − β = 4

3
− β ≤ 2

3
≤ 1.

Since ω1β ≤ 2
3

for all β, then the pair (S, (1 − β)C + ω1βB) is log canonical.

Lemma A.5.8. Let S be a smooth del Pezzo surface, with K2
S = 4. Let E1 be a line and q0 ∈ E1

a point such that no line other than E1 contains it. Let C ∈ ∣ −KS ∣ a smooth hyperplane section

with q0 ∈ C. Consider the curves in S with the notation of Table 3.3. Let

H = 3

5
A5 +

1

5
(R125 +R135 +R145) +

1

5
Q5 +

2

5
E1∼Q −KS ,

and assume all the curves used in the definition of H are irreducible and smooth. Then the pair

(S, (1 − β)C + ω1βH) is log canonical where

ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

Proof. Obseve that

C ⋅A5 = A5 ⋅R1i5 = Q5 ⋅A5 = R1i5 ⋅R1j5 = 2
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for i ≠ j, C ⋅Q5 = C ⋅R1i5 = 3, and

E1 ⋅A5 = E1 ⋅R1i5 = E1 ⋅Q5 = C ⋅E1 = 1.

Without loss of generality we may assume that (C ⋅Q5)∣q0 = 3 and (C ⋅R1i5)∣q0 = 2, for all i.

Moreover:

(C ⋅A5)∣q0 = (C ⋅R1i5)∣q0 = (R1i5 ⋅R1j5)∣q0 = (A5 ⋅R1i5)∣q0 = 2

for all i and i ≠ j. Then the minimal log resolution f ∶ S̃ → S of (S, (1 − β)C + ω1βH) consists

of 3 blow-ups with exceptional divisors F1, F2, F3. The log pullback is

f∗(KS + (1 − β)C + ω1βH)∼QKS̃ + (1 − β)C̃ + ω1βH

+ (9

5
ω1β − β)F1 + (16

5
ω1β − 2β)F2 + (17

5
ω1β − 3β)F3.

If 0 < β ≤ 2
3
, then 9

5
ω1β − β = 4

5
β ≤ 1, 16

5
ω1β − 2β = 6

5
β ≤ 1 and 17

5
ω1β − 3β = 2

5
β ≤ 1.

If 1
2
< β ≤ 1, then 9

5
ω1β − β = 6

5
− β ≤ 1, 16

5
ω1β − 2β = 32

15
− 2β ≤ 1 and 17

5
− 3β ≤ 1. Therefore

the pair (S, (1 − β)C + ω1βH) is log canonical.

A.6 Local log canonical thresholds

The computations in this section are local in nature and they are used in sections 4.11, 4.10

and 4.9.

Lemma A.6.1. Let S be a smooth surface, T be a cuspidal curve with local equation {y2−x3 = 0}
around p = (0,0) and C be a smooth curve not passing through p and intersecting T normally.

If 0 < β ≤ 1, then

lct(S, (1 − β)C,βT ) = 5

6β
.

Proof. Let f ∶ S̃ → S be a log resolution of the pair (S, (1−β)C+λβT ). The morphism f consists

of 3 consecutive blow-ups over p with exceptional divisors F1, F2, F3. The log pullback is

f∗(KS + (1 − β)C + λβT )∼QKS̃ + (1 − β)C̃ + λβT̃ + (2λβ − 1)F1 + (3λβ − 2)F2 + (6λβ − 4)F3.

Then lct(S, (1 − β)C,βT ) = min{ 1
β
, 5

6β
} = 5

6β
.

Lemma A.6.2. Let S be a smooth surface, L and M be two smooth curves intersecting at a

tacnodal point p (local equation {(y2 −x)y = 0} around p = (0,0)) and C be a smooth curve not

passing through p and intersecting L and M normally. If 0 < β ≤ 1, then

lct(S, (1 − β)C,β(L +C)) = 3

4β
.

Proof. Let f ∶ S̃ → S be a log resolution of the pair (S, (1− β)C +λβ(L+C)). The morphism f

consists of 2 consecutive blow-ups over pwith exceptional curves F1, F2. The log pullback is

f∗(KS + (1 − β)C + λβ(L +C))∼QKS̃ + (1 − β)C̃ + λβ(L̃ + M̃) + (2λβ − 1)F1 + (4λβ − 2)F2.
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Then

lct(S, (1 − β)C,β(L +C)) = min{ 1

β
,

3

4β
} = 3

4β
.

Lemma A.6.3. Let S be a smooth surface, T be a cuspidal curve with local equation {y2−x3 = 0}
around p = (0,0) and C be a smooth curve passing through p such that T and C intersect with

simple normal crossings away from p. Let 0 < β ≤ 1. If (C ⋅ T )∣p = 3, then

lct(S, (1 − β)C,βT ) = 2 + 3β

6β
.

If (C ⋅ T )∣p = 2, then

lct(S, (1 − β)C,βT ) = 3 + 2β

6β
.

Proof. Let f ∶ S̃ → S be a log resolution of the pair (S, (1−β)C+λβT ). The morphism f consists

of 3 consecutive blow-ups over p with exceptional curves F1, F2, F3.

Suppose (C ⋅ T )∣p = 2. Then the log pullback is

f∗(KS +(1−β)C+λβT )∼QKS̃ +(1−β)C̃+λβT̃ +(2λβ−β)F1+(3λβ−β−1)F2+(6λβ−2β−2)F3,

and we have that

lct(S, (1 − β)C,βT ) = min{1 + β
2β

,
2 + β
3β

,
3 + 2β

6β
} = 3 + 2β

6β
.

Suppose (C ⋅ T )∣p = 3. Then the log pullback is

f∗(KS +(1−β)C +λβT )∼QKS̃ +(1−β)C̃ +λβT̃ +(2λβ −β)F1+(3λβ −2β)F2+(6λβ −3β −1)F3,

and we have that

lct(S, (1 − β)C,βT ) = min{1 + β
2β

,
1 + 2β

3β
,
2 + 3β

6β
} = 2 + 3β

6β
.

Lemma A.6.4. Let S be a smooth surface, L and M be two smooth curves intersecting at a

tacnode (local equation {(y2 − x)y = 0} around p = (0,0)) and C be a smooth curve intersecting

both L and M normally at p and such that Supp(L∪M ∪C) has simple normal crossings away

from p. If 0 < β ≤ 1, then

lct(S, (1 − β)C,β(L +C)) = 2 + β
4β

.

Proof. Let f ∶ S̃ → S be a log resolution of the pair (S, (1− β)C +λβ(L+C)). The morphism f

consists of 2 consecutive blow-ups over p. The log pullback is

f∗(KS + (1 − β)C + λβ(L +C))∼QKS̃ + (1 − β)C̃ + λβ(L̃ + M̃) + (2λβ − β)F1 + (4λβ − β − 1)F2.

Then

lct(S, (1 − β)C,β(L +C)) = min{1 + β
2β

,
2 + β
4β

} = 2 + β
4β

.
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Lemma A.6.5. Let S be a smooth surface, L1, L2, L3,C four smooth curves intersecting each

other normally at p ∈ S and with simple normal crossings away from p. If 0 < β ≤ 1, then

lct(S, (1 − β)C,β(L1 +L2 +L3)) =
1 + β
3β

.

Proof. Let f ∶ S̃ → S be a log resolution of the pair (S, (1 − β)C + λβ(L1 + L2 + L3)). The

morphism f consists of the blow-up of p. The log pullback is

f∗(KS + (1 − β)C + λβ(L1 +L2 +L3))∼QKS̃ + (1 − β)C̃ + λβ(L̃1 + L̃2 + L̃3) + (3λβ − β)F1.

Then

lct(S, (1 − β)C,β(L +C)) = 1 + β
3β

.

Lemma A.6.6. Let S be a smooth surface, L1, L2, L3 four smooth curves intersecting each

other normally at p ∈ S and C a smooth curve intersecting L1, L2, L3 at different points and

normally. If 0 < β ≤ 1, then

lct(S, (1 − β)C,β(L1 +L2 +L3)) =
2

3β
.

Proof. Let f ∶ S̃ → S be a log resolution of the pair (S, (1 − β)C + λβ(L1 + L2 + L3)). The

morphism f consists of the blow-up of p. The log pullback is

f∗(KS + (1 − β)C + λβ(L1 +L2 +L3))∼QKS̃ + (1 − β)C̃ + λβ(L̃1 + L̃2 + L̃3) + (3λβ − 1)F1.

Then

lct(S, (1 − β)C,β(L +C)) = 2

3β
.
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Appendix B

Summary of results and

numerical data

Let S be a non-singular complex del Pezzo surface and C ∈ ∣ −KS ∣ be a smooth curve. Let

β ∈ (0,1]. In this appendix, for the convenience of the reader, we summarise in tables the

list of alpha–invariants α(S, (1 − β)C). For each value, the last column indicates the interval

for β in which Theorem 1.1.9 guarantees the existence of a Kähler-Einstein metric with edge

singularities (KEE) along C of angle 2πβ. For simplicity we do not include all the notation

when describing C. We refer the reader to each particular Theorem for the details.

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

Any smooth curve.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 3β

9β
for

1

6
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(0, 1
3
)

Table B.1: Projective Plane P2 (Theorem 4.2.2).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

Any smooth curve.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1.

(0, 1
2
)

Table B.2: P1 × P1 (Theorem 4.3.2).
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Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

(F ⋅C)∣r = 2 where r = E ∩C. ω1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

6
,

1 + 2β

8β
for

1

6
≤ β ≤ 5

6
,

1

3β
for

5

6
≤ β ≤ 1.

(0, 3
10

)

Otherwise. ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(0, 3
7
)

Table B.3: Hirzebruch surface F1 (Theorem 4.4.3).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

C has a
pseudo-Eckardt point.

ω4 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + β
5β

for
1

4
≤ β ≤ 2

3
,

1

3β
for

2

3
≤ β ≤ 1.

(0, 3
10

)

No pseudo-Eckardt point in C
and (C ⋅Li)∣ri = 2
for some i = 1,2.

ω3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 2β

6β
for

1

4
≤ β ≤ 1

2
,

1

3β
for

1

2
≤ β ≤ 1.

(0, 1
2
)

No pseudo-Eckardt point in C,
(C ⋅Li)∣ri = 1

for i = 1,2, and
(R ⋅C)∣r = 3.

ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

4
,

1 + 3β

7β
for

1

4
≤ β ≤ 4

9
,

1

3β
for

4

9
≤ β ≤ 1.

(0, 1
2
)

Otherwise. ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1

3β
for

1

3
≤ β ≤ 1.

(0, 1
2
)

Table B.4: Del Pezzo surface of degree 7 (Theorem 4.5.3).
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Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

C has a
pseudo-Eckardt point.

ω3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + β
4β

for
1

3
≤ β ≤ 1.

(0, 3
5
)

No pseudo-Eckardt point in C
and (C ⋅L)∣L∩E1 = 2
for some model of S.

ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

3
,

1 + 2β

5β
for

1

3
≤ β ≤ 3

4
,

1

2β
for

3

4
≤ β ≤ 1.

(0, 3
4
)

Otherwise. ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(0, 3
4
)

Table B.5: Del Pezzo surface of degree 6 (Theorem 4.6.2).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

Any smooth curve.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1

2β
for

1

2
≤ β ≤ 1.

(0, 3
4
)

Table B.6: Del Pezzo surface of degree 5 (Theorem 4.7.9).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

C has a
pseudo-Eckardt point.

ω3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + β
3β

for
1

2
≤ β ≤ 1.

(0,1)

No pseudo-Eckardt point in C
but (A ⋅C)∣p = (B ⋅C)∣p = 2

for A +B ∈ ∣ −KS ∣ and A ∪ b = p.
ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + 2β

4β
for

1

2
≤ β ≤ 5

6
,

2

3β
for

5

6
≤ β ≤ 1.

(0,1)

Otherwise. ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

(0,1)

Table B.7: Del Pezzo surface of degree 4 (Theorem 4.8.1).
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Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

pB ∈ C the tacnodal
point of some B ∈ ∣ −KS ∣.

ω3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2 + β
4β

for
2

3
≤ β ≤ 1.

(0,1)

C contains no tacnodal points
but pT ∈ C, the cuspidal point

of some T ∈ ∣ −KS ∣
such that (C ⋅D)∣pT = 3.

ω2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2 + 3β

6β
for

2

3
≤ β ≤ 5

6
.

3

4β
for

5

6
≤ β ≤ 1.

(0,1]

Otherwise. ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 3

4
,

3

4β
for

3

4
≤ β ≤ 1.

(0,1]

Table B.8: Smooth cubic surface with no Eckardt points (Theorem 4.9.1).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

C contains some
Eckardt point.

ω5 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 1

2
,

1 + β
3β

for
1

2
≤ β ≤ 1.

(0,1]

Otherwise. ω4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2

3β
for

2

3
≤ β ≤ 1.

(0,1]

Table B.9: Smooth cubic surface with some Eckardt point (Theorem 4.9.1).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

p ∈ C for p the singularity
of a cuspidal B ∈ ∣ −KS ∣

ω2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 3

4
,

3 + 2β

6β
for

3

4
≤ β ≤ 1.

(0,1]

Otherwise. ω1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 5

6
,

5

6β
for

5

6
≤ β ≤ 1.

(0,1]

Table B.10: Del Pezzo surface of degree 2 without tacnodal singular curves in ∣ −KS ∣ (Theorem
4.10.1).

Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

p ∈ C for p the singularity
of a tacnodal B ∈ ∣ −KS ∣

ω4 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 2

3
,

2 + β
4β

for
2

3
≤ β ≤ 1.

(0,1]

Otherwise. ω3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for 0 < β ≤ 3

4
,

3

4β
for

3

4
≤ β ≤ 1.

(0,1]

Table B.11: Del Pezzo surface of degree 2 without some tacnodal singular curve in ∣ − KS ∣
(Theorem 4.10.1).
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Characterisation of C α(S, (1 − β)C) α(S, (1 − β)C > 2
3

∣ −KS ∣ contains a cuspidal
rational curve.

ω2 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 for 0 < β ≤ 5

6
,

5

6
for

5

6
≤ β ≤ 1.

(0,1]

Otherwise. ω1 = 1 (0,1]

Table B.12: Del Pezzo surface of degree 1 (Theorem 4.11.1).
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