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Abstract

In algebraic geometry a variety is called toric if it has an embedded torus (C∗)n whose
Zariski closure is the variety itself. We focus on normal toric varieties since they
can be studied from a combinatorial point of view. We introduce the basic theory and
construct tools to compute explicit geometric information from combinatorics including
smoothness, compactness, torus orbits, subvarieties and classes of divisors. We analyse
the relation with GIT and resolution of singularities preserving the toric structure. We
finish with an application of the theory to the calculation of partition functions or string
theories over the singular varieties V(xy − zN0wN1

).
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Introduction

In the last 20 years the field of toric geometry has experienced a huge development
and it is not rare to find papers in algebraic geometry or mathematical physics where
examples arise from toric varieties. The reason for this is that toric varieties can
be approached in a combinatorial way, helping to develop a geometric intuition and
making possible to compute examples of abstract concepts such as GIT quotients,
classes of divisors or crepant resolutions. Many of these computations can be done
algorithmically [BIP10a] and there is a software package available for Macaulay2, in
particular to compute cohomology classes of toric bundles [BIP10b].

In mathematical physics toric varieties have become relevant in the theory of gauge
linear sigma models (GLSM), as it is stated in [HKK+03]:

“In the absence of a superpotential, the set of supersymmetric ground states
of the GLSM is a toric variety. Conversely, toric varieties can be described
as the set of ground states of an appropriate gauge linear sigma model.”

Moreover, many relevant examples of Mirror Symmetry and duality correspondence
for Landau Ginzburg models [Cla08] are known for toric varieties. Furthermore, toric
geometry is a powerful tool for the study of moduli spaces of representation of quivers
[Cra08].

The main goal of this report is to present in a concise but complete way the basic
constructions of toric varieties and establish procedures to obtain information about
their geometric properties. There are many surveys on toric varieties but usually they
just compute examples without actually explaining why those methods work. We try to
justify all the steps, avoiding the most technical in the interest of brevity, but providing
adequate references.

Briefly, a variety X is toric if it contains a torus (C∗)n as a dense Zariski open
subset such that the torus action on (C∗)r extends to X. Toric varieties have an
associated object called the fan which encodes all the one-parameter subgroups of the
embedded torus. Fans are made of cones, one cone for each of the sets in a torus
invariant open cover. However, fans can be defined independently of any toric variety
and a normal toric variety can be recovered from its fan. When we restrict to normal
toric varieties, this correspondence between fans and toric varieties is bijective up to
isomorphism. This is proved in Chapter 2. Prior to this, in Chapter 1 we describe the
basic definitions in detail and how to go from the fan to the variety and vice versa.
Moreover, this chapter analyses morphisms between fans and equivariant morphisms
between toric varieties and how they induce each other.

From Chapter 2 onwards we will restrict ourselves to normal toric varieties, once
their correspondence with fans is proved. We also give an exhaustive criteria to deter-
mine when a variety is compact or smooth inspecting its fan and we establish a one-to-
one correspondence between cones and torus-invariant orbits (the so called Orbit-Cone
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correspondence). The chapter finishes with a method to compute classes of divisors for
normal toric varieties.

Chapter 3 introduces more advanced topics. After recalling briefly some Geometric
Invariant Theory (GIT) we show how a normal toric variety is a GIT quotient of
another toric variety (some Zariski open set of the affine space). This provides a version
of the Orbit-Cone correspondence for subvarieties. The next chapter shows how any
toric variety can be resolved algorithmically via toric resolutions in a finite number of
steps, simplifying the more general result for varieties over algebraic closed fields of
characteristic 0 in [Hir64] and [Hau03].

We finish with Chapter 5 where we show how to resolve the generalised conifold
V(xy − zN0wN1) ⊂ C4 via toric crepant resolutions1. We also give an algorithm to
compute all the embedded bundles product of the resolution. This is needed in order
to compute certain partition functions for the conifold, and it appears in [Nag10],
[Sze08] and [GKM+on].

Notation

All varieties, unless otherwise stated will be abstract algebraic varieties over C, accord-
ing to the following definition:

Definition 0.0.1. X is an abstract variety or just a variety if

X =
k⊔

α=1

Vα

/
∼,

where Vα are affine varieties and for all pairs α, β we have Zariski open sets Vβα ⊆ Vα
and isomorphisms gβα : Vβα ∼= Vαβ satisfying:

(i) gαβ = g−1
βα ,

(ii) gβα(Vβα ∩ Vγα) = Vαβ ∩ Vγα and gγα = gγβ ◦ gβα on Vβα ∩ Vγα for all α, β, γ,

where a ∼ b if and only if a ∈ Vαβ , b ∈ Vβα and b = gβα(a), an equivalence relation.
The usual cover will be Uα = {[a] ∈ X : a ∈ Vα} ∼= Vα.

We will assume without mention that all our varieties are separated, i.e. that
the image of X →֒ X × X is a Zariski closed set. Standard facts from Algebra and
Algebraic Geometry will be assumed, as presented in [AM69], [Har77] or the more
accessible [Har95]. Standard facts from Geometric invariant theory will be assumed
but the general theory will be recalled informally, [MFK94] is the standard reference.

In particular recall the following definitions:

Definition 0.0.2. A lattice N ∼= Zn is a free Abelian group of rank n. Its dual
lattice is M = HomZ(N,Z) ∼= Zn.

Definition 0.0.3. A Weil divisor D is Q-Cartier if some positive multiple of D is
Cartier.

Definition 0.0.4. Given an irreducible variety X a projective resolution of X is a
morphism f : X ′ → X such that:

1This variety often appears in the context of string theory and Gromov-Witten theory and it refers
to the fact that it looks a like a 3-dimensional cone. The reason we use the term ’generalised’ is to
distinguish it from the particular case where N0 = N1 = 1 which is usually called just ’conifold’.
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(i) X ′ is smooth and irreducible.

(ii) f is projective.

(i) f induces an isomorphism of varieties f−1(X \Xsing) ∼= X \Xsing.

All the constructions and theorems are for arbitrary lattices N ∼= Zn, and some
choice of pairing 〈, 〉 with its dual lattice M = HomZ(N,Z). However when it comes to
examples, we will use N = Zn and the usual pairing in Zn to avoid confusion.

All the cones (Definition 1.1.3) will be strongly convex rational polyhedral
cones (scrapcs), unless otherwise stated and we will often refer to them simply as
cones. This is not the case of dual cones, since duality does not preserve strong
convexity (unless the dimension of the cones and the ambient lattice is the same).

For simplicity, the dimension of the fans (Definition 1.1.12) will be the same as the
dimension of the lattice. This guarantees that the toric variety XΣ of a fan Σ does not
have torus factors (i.e. XΣ is not the direct product of a toric variety and a torus). For
fans with smaller dimension than the ambient lattice sometimes more work is needed,
especially in Chapter 3.
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Chapter 1

Toric varieties and fans.

The purpose of this section is to establish the relation between toric varieties and fans.
We start defining cones and fans as well as some of their properties. Then we show
how we can construct a toric variety from a fan, by gluing together affine coordinate
rings. Finally, we show how we can build the fan of a given toric variety. This chapter
requires a lot of technical lemmas, but the effort is justified in Chapter 2, where we
analyse the information of the variety that can be read directly from the fan.

Definition 1.0.5. A torus T of dimension r is an algebraic variety isomorphic to
(C∗)r where T inherits the group structure from the isomorphism.

Definition 1.0.6. A complex algebraic variety X is toric if there exists an embedding
ι : (C∗)r −֒−→ X, such that the image of ι is a dense open subset in the Zariski Topology
and the usual multiplication in T = ι((C∗)r) extends to X (i.e. T acts on X). ι is
sometimes called a toric structure on X.

Remark. Note that dim(X) = r. We call T = (C∗)r the standard torus of dimension
r.

1.1 Lattices and fans.

Let T ∼= (C∗)r be a torus. A one-parameter subgroup is a group homomorphism
λ : C∗ → T . In particular, for the standard torus (C∗)r all one-parameter subgroups
are of the form (see [Hum75, §16]):

λ = λu(t) = (tu1 , . . . , tur), u = (u1, . . . , ur) ∈ Z.

Therefore, the one parameter subgroups of a torus define a lattice N ∼= Zr, called the
lattice of one-parameter subgroups.

A character is a group homomorphism χ : T → C∗. For the standard torus (see
[Hum75, §16]) all characters are of the form

χ = χa(t1, . . . , tr) = ta11 · · · · · t
ar
r , a = (a1, . . . , ar) ∈ Zr.

The characters of a torus define a character lattice M ∼= Zr dual to N . There exists
a natural pairing 〈, 〉 : M ×N → Z defined in the following. First note that

〈χa, λu〉 = χa ◦ λu : C∗ −→ C∗,
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is a group endomorphism of C∗. Since all these endomorphisms have the form t → tl

for some l ∈ Z we can define
〈χa, λu〉 = l ∈ Z.

Finally, tensoring with C∗ we get isomorphisms:

N ⊗ C∗ ∼= T, u⊗ z 7→ λu(z),

M ⊗ C∗ ∼= Hom(T,C∗), m⊗ z 7→ χa(z).

For this reason we will usually write TN for the torus, to stress what the associated
lattice is.

Example 1.1.1. (C∗)r −֒−→ Cr is a toric structure for Cr with a ∈ N = Zr, b ∈M =
Zm and

〈(a1, . . . , ar), (b1, . . . , br)〉 =
r∑

i=1

aibi.

The following example is generalised in Chapter 5:

Example 1.1.2. The conifold V = V(xy − zw) ⊂ C4 is toric with torus

V ∩ (C∗)4 = {(t1, t2, t3, t1t2t
−1
3 ) : ti ∈ C∗}.

Definitions 1.1.3. Let NR := N ⊗ R ∼= Rr, MR :=M ⊗ R ∼= Rr. We define

σ = {r1v1 + · · ·+ rsvs ∈ NR : ri ≥ 0} ⊆ NR,

a convex polyhedral cone, and we call S = {v1, . . . , vs} a set of generators for σ.
σ is rational if the generators are chosen to be in N .

The dimension, dim(σ), of the cone σ is the dimension of its relative interior as a
topological space. The dual of a cone σ is

σ∨ := {u ∈MR : 〈u, v〉 ≥ 0 ∀v ∈ σ}.

A face τ of σ is

τ = σ ∩m⊥ = {v ∈ σ : 〈m, v〉 = 0}, for some m ∈ σ∨.

A face of codimension one is called a facet and a one-dimensional cone a ray.
If σ ∩ (−σ) = {0}, then we say σ is strongly convex. If σ is also rational, then

each ray ρv is spanned by vectors v ∈ σ ∩N , and v is called a ray generator. A cone
is spanned by all its rayd generators, and we write σ = Cone(ρv1 , . . . , ρvr) or simply
σ = Cone(v1, . . . , vr). From all generators of a ray ρ we can choose a minimal one,
which generates ρ ∩N as a semigroup. This will be useful later on.

Example 1.1.4. Consider Figure 1.1 (a) with lattice N = Z2 with the standard basis
{e1, e2} and NR = R2. We have six cones; two are of dimension 2 and may be expressed
in terms of their minimal generators as:

σ1 = Cone(e1, e1 + 3e2), σ2 = Cone(−e1, e1 + 3e2).

The facets for σ1 are (Cone(e1) and τ = Cone(−e1, e1 + 3e2) and the facets for σ2 are
Cone(−e1) and τ . All five cones have as a face the trivial cone (0, 0). The faces of σi
are precisely the rays, since we are in dimension 2.

5



σ2 σ1

τ

(a) Fan Σ = 〈σ1, σ2〉, m > 0.

(−σ2)
∨

σ∨

1

m = (3,−1)

m⊥

(b) Cones σ∨

1 and (−σ2)
∨, m ≥ 0.

Figure 1.1: Fan Σ and its dual cones.

All the cones we use, unless otherwise stated, will be strongly convex rational
polyhedral cones (scrapcs), since they satisfy good properties that allow us to
construct the desired varieties, as the following lemmas show.

Lemma 1.1.5 ([Ful93, section 1.2 (1), (2), (9), (4), (3)]). For a convex polyhedral cone
σ:

(i) (σ∨)∨ = σ.

(ii) If σ is scrapc, then so are its faces.

(iii) The dual of σ is a convex polyhedral cone.

(iv) A face of a face is a face, and the intersection of two faces is a face.

(v) If σ is a scrapc, then a face of σ∨ has the form σ∨ ∩ τ⊥, where τ is a face of σ.

Remark. Note that the cones σi in Example 1.1.4 are scrapc and so are their faces by
part (ii) of this lemma.

Given rational generators for σ, say v1, . . . , vs, we often need to find generators for
σ∨. We assume that σ spans NR as a vector space (otherwise we restrict to the subspace
spanned by σ). Hence, for each facet τ we have a unique minimal vector uτ ∈ σ

∨ such
that 〈uτ , v〉 ≥ 0, ∀v ∈ σ and uτ ⊥ τ . Doing this for every facet we get generators for
σ∨ ⊂MR (see [Ful93, section 1.2 (8)] for details).

Lemma 1.1.6 (Gordan’s lemma: [Ful93, section 1.2 Prop. 1]). If σ is a rational convex
polyhedral cone, then Sσ := σ∨ ∩M is a finitely generated semigroup.

Lemma 1.1.7 ([Ful93, section 1.2 (13)]). If a cone is strongly convex, then its gener-
ators are given by its rays.

Example 1.1.8. In Figure 1.1, from Example 1.1.4, m = (3,−1) is the unique minimal
vector uτ of σ∨1 such that uτ ⊥ τ or in other words, m is the inner pointing vector
perpendicular to τ . Following the same procedure for e1 we obtain the cone σ∨1 as
pictured in Figure 1.1 (b). Note that σ∨1 is strongly convex. However, strong convexity
is not generally preserved by duality, just convexity. Indeed τ∨ = Cone(m,−m, e2) and
τ∨ = (−(τ∨)) = R〈m〉 6= (0, 0). It is easy to check that Sσ = Z〈e2,m, e1〉.
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Some scrapcs will be of special interest in Chapter 2.

Definition 1.1.9. Let σ ⊆ NR be a scrapc,

(i) σ is smooth if its minimal generators form part of a Z-basis for N .

(ii) σ is simplicial if its minimal generators are linearly independent over NR.

Remarks 1.1.10. These properties descend to faces, i.e. a face of a simplicial cone is
simplicial and a face of a smooth cone is smooth. Moreover

(i) If a cone σ is not smooth, then none of the cones containing σ are smooth.

(ii) Smooth cones are simplicial.

v2 = (−1,−m)

v3 = (0, 1)

v1 = (1, 0)

(a) m < 0.

v2 = (−1,−m)

v3 = (0, 1)

v1 = (1, 0)

(b) m > 0.

Figure 1.2: Fans of Tot(OCP1(m)).

Example 1.1.11. In Figure 1.1 (a) both cones are simplicial but not smooth. In Figure
1.2 both cones are smooth. For an example of a non-simplicial cone, we need to go
to higher dimensions. For instance, the cone in Figure 5.1 is not simplicial, since it is
generated by 4 rays.

Definition 1.1.12. A fan Σ ⊆ NR, is a finite collection of scrapcs in NR satisfying:

• Each face of a cone in Σ is a cone in Σ.

• The intersection of two cones in Σ is a face of each of them.

The set of cones of dimension k is Σ(k). The support of Σ is |Σ| =
⋃

σ∈Σ σ.
We will write Σ = 〈σi〉 for a fan formed by cones σi and all their faces (providing

they satisfy the definition).

There are obvious definitions for fans generalising the ones in Definition 1.1.9:

Definition 1.1.13. Let Σ ⊆ NR be a fan,

(i) Σ is smooth if all its cones are smooth.

(ii) Σ is simplicial if all its cones are simplicial.

(iii) Σ is complete if |Σ| = NR.
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Remark. We will assume that {vρ}ρ∈Σ(1) span NR (i.e. |Σ(1)| ≥ dim(NR)), since if
this is not the case then we can always change N by a projection in some lattice of
dimension n.

Lemma 1.1.14 ([Ful93, section 1.2 Prop. 2]). Let τ = σ ∩m⊥, m ∈ σ∨ ∩M be a face
of a cone σ then

Sτ = Sσ + Z≥0(−m).

Lemma 1.1.15 (Separation lemma, [Ful93, section 1.2 (12)] ). If σ1, σ2 are convex
polyhedral cones and τ = σ1∩σ2 is a face of each, then for all m in the relative interior
of σ∨1 ∩ (−σ2)

∨,
τ = σ1 ∩m

⊥ = σ2 ∩m
⊥. (1.1)

Example 1.1.16. Figure 1.1 (a) shows the fan Σ = 〈σ1, σ2〉, where τ = σ1 ∩ σ2, as
described in examples 1.1.4 and 1.1.8. In Figure 1.1 (b) we can see how Lemma 1.1.15
works. The dual cone of σ1 (this is σ∨1 ) and the negative of the dual of σ2, i.e. σ

∨
2 share

the ray generated by m, which is the relative interior of σ∨1 ∩ (−σ2)
v, and m defines τ

as in (1.1).

Note also that when N = Zn, as in this example, the algorithm described after
Lemma 1.1.5 to find dual cones consists simply in finding the perpendicular inner
vectors to each of the faces.

Lemma 1.1.17. If τ = σ1 ∩ σ2 is a face of two cones, then Sτ = Sσ1 ∩ Sσ2.

Proof. It is a fact from cone theory that σ∨1 + σ∨2 = (σ1 ∩ σ2)
∨ ⊂ τ∨. Therefore

Sσ1 + Sσ2 ⊆ Sτ .

Let u ∈ Sτ and m ∈ σ∨1 ∩ (−σ2)
∨ ∩ M like in Lemma 1.1.15. Hence, Lemma

1.1.14 applied to σ1 gives u = v − km for v ∈ Sσ1 , k ≥ 0. However −m ∈ Sσ2 so
u ∈ Sσ1 + Sσ2 .

1.2 Building the toric variety of a fan by gluing affine

coordinates.

Given a fan, we will construct an affine coordinate ring for each of the cones and then
show how they glue together via common faces, using the properties in section 1.1.

Let N ∼= Zr be a lattice and σ ⊂ NR a cone, such that dim(σ) = r. For the
semigroup Sσ in Lemma 1.1.6, we get a finitely generated commutative C-algebra C[Sσ].
Indeed, by lemmas 1.1.14 and 1.1.15, σ is generated by minimal generators v1, . . . , vm,
so C[Sσ] = C[χv1 , . . . , χvm ] where χvi is the character corresponding to vi. Moreover

C[Sσ] ⊆ C[M ] (1.2)

where M is the dual of N . Hence C[Sσ] is an integral domain.

It is a well known construction in commutative algebra (see [AM69]) that choosing
generators for C[Sσ], say X1, . . . , Xm, we get

C[Sσ] = C[X1, . . . , Xm]
/
I

where I is the ideal generated by the relations among those generators. This is the ring
over the affine variety Uσ := Spec(C[Sσ]).
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Taking the contravariant functor Spec in (1.2) we arrive at:

TN = Spec(C[M ]) ⊆ Spec(C[Sσ]) = Xσ.

Since dimσ = dimN by assumption, the closure of TN is Xσ. Therefore we have
proved:

Proposition 1.2.1. Given a scrapc σ ⊆ NR of dimension r,

Xσ := Spec(C[Sσ])

is an affine toric variety.

Now that we have constructed affine varieties for cones, we want to use this idea
to construct toric abstract algebraic varieties from fans in a consistent way. Suppose
we have a fan Σ ⊆ NR with a finite number of cones σi in it. By the construction
we have just done, for each σi we have a toric affine variety Uσi

, with coordinate ring
C[Sσi

]. We want to glue them according to Definition 0.0.1. Since the number of cones
is finite, it is enough to show the case of two cones σ1 and σ2 ∈ Σ with a face in common
τ = σ1 ∩ σ2.

Given σ1, σ2 ∈ Σ with a face τ in common, by Lemma 1.1.14:

C[Sτ ] = C[Sσi
+ Z(−m)] ∼= C[Sσi

]χm

where χm is the generator of the coordinate ring corresponding to m and C[Sσi
]χm is

the localisation at this element. Hence, by Lemma 1.1.15

Uσ1 ⊇ (Uσ1)χm = Uτ = (Uσ2)χ−m ⊆ Uσ2 . (1.3)

We can define Uσi
= Spec(C[Sσi

]), which is an affine toric variety and (1.3) gives us an
isomorphism:

gσ2,σ1 : (Uσ1)χm −→ (Uσ2)χ−m

which satisfies the Definition 0.0.1 trivially, since it is the identity in Uτ ⊂ Uσ1 and

XΣ :=
⊔
Uσ

/
∼.

Theorem 1.2.2. Given a fan Σ in NR, XΣ is toric.

Proof. Since ∀σ ∈ Σ σ is a scrapc, {0} is a face of σ and TN = Spec(C[M ]) ∼= (C∗)n ⊂
Uσ, ∀σ ∈ Σ. We glue all these cones together, therefore TN ⊆ XΣ. The action of TN
on Uσ extends to XΣ since gσ2,σ1 is the identity in Uσ1 ∩ Uσ2 , and therefore it agrees
on intersections.

Example 1.2.3. Consider the fan in Figure 1.1. The coordinate rings for the dual
cones are

C[Sσ1 ] = C[x2, x
3
1x

−1
2 ], C[Sσ2 ] = C[x1, x

−3
1 x2]

and the gluing map in the coordinate rings is given by:

g∗σ2σ1
: C[x2, x

3
1x

−1
2 ]x3

1x
−1
2

∼= C[x1, x
−3
1 x2]x−3

1 x2

determining the gluing map between the affine varieties.
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1.3 Building the fan of a toric variety.

Suppose we have a toric variety X with torus T ⊆ X, T ∼= (C∗)r. To construct the fan
consider the lattice given by one parameter subgroups, N = Hom(C∗, T ) ∼= Zr.

A one-parameter subgroup Ψ̃ ∈ N can be seen as Ψ: C∗ → X by Ψ(t) := Ψ̃(t) · 1
where 1 ∈ T is the identity of the torus. Since T = X we have that limt→0Ψ(t) ∈ X
and ZΨ := T · limt→0Ψ(t) is a T -invariant subvariety of X.

As we will see more formally later on, all the T -invariant subvarieties of a variety
XΣ are in 1:1 correspondence with the cones in Σ. Therefore we need to include in the
same cone those one-parameter subgroups which give the same toric subvariety. That
is Ψ, Ψ′ are in the same cone if, and only if, ZΨ = ZΨ′ . This is an equivalent relation
so we can split NR into equivalent classes (cones). Note that we are using equality of
subvarieties. If ZΨ ( ZΨ′ , then Ψ and Ψ′ are not in the same cone. As we will see later
this will force the cone of Ψ′ to be a face of the cone of Ψ.

Indeed, by the splitting into equivalent classes, for Ψ ∈ N we have exactly one
σ ∈ Σ such that Ψ is in the relative interior of σ with Zσ = ZΨ.

Example 1.3.1. We aim to show that the fans of Tot(OCP1(m)) are the ones pictured
in Figure 1.2. Let p = ([z0 : z1], θ) ∈ Tot(OCP1(m)) given in homogeneous coordinates.
Note that ([0 : 0], θ) can never be a point, (z0, z1) are related by a linear ratio, and θ
can take local arbitrary values. We can cover the variety with the usual cover U, V for
CP1 and take local coordinates for the open sets:

u =
z1
z0
, ζU =

θ

zm0
, in U = {z0 6= 0},

v =
z0
z1
, ζV =

θ

zm1
, in V = {z1 6= 1}. (1.4)

The transition functions for U ∩ V are:

v =
1

u
, ζV = u−mζU (1.5)

which are precisely the ones for Tot(OCP1(m)).

The embedding of the torus and the torus action are:

T = (C∗)2 −֒−→ Tot(OCP1(m))

(t1, t2) −֒−→ ([1 : t1], t
m
2 )

(t1, t2) · ([x0 : x1], θ) = ([x0 : x1 · t1], θ t
m
2 ).

This seems like an arbitrary embedding, but it is the one which agrees in the intersection
U ∩ V with the transition functions (1.4) and (1.5).

To find the fan we look for limits of all the possible one-parameter subgroups
Ψa,b(t) = ([1 : ta], tb) ∼ ([t−a : 1], tb−ma), and the closure of their orbits (this is
where we use that the embedding is compatible with the transition functions).

For instance, if a > 0, b = 0, then

lim
t→0

Ψ(t) = lim
t→0

([1 : ta], 1) = ([1 : 0], 1), T · ([1 : 0], 1) = O[1:0](m).
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If b > ma, a < 0, then:

lim
t→0

Ψ(t) = lim
t→0

([1 : ta], tb) = lim
t→0

([t−a : 1], tb−ma) = ([0 : 1], 0),

and the closure is
T · ([0 : 1], 0) = T · ([0 : 1], 0),

where we use the transition functions in U ∩V in (1.5). The case where b < ma, b < 0
is particularly interesting, as we obtain:

lim
t→0

Ψ(t) = lim
t→0

([1 : ta], tb) = lim
t→0

([t−
b
m : ta−

b
m ], 1) = ([0 : 0], 1) 6∈ XΣ.

This happens because Tot(OCP1(m)) is not compact, so not all limits are reached. The
other cases are done similar and they are summarised in tables 1.1 and 1.2.

(a, b) ∈ Z2 limt→0Ψ(t) T · limt→0Ψ(t)

a, b > 0 ([1 : 0], 0) {([1 : 0], 0)}

a = 0, b > 0 ([1 : 1], 0) CP1

a > 0, b = 0 ([1 : 0], 1) O[1:0](m)

a < 0, b > am ([0 : 1], 0) {([0 : 1], 0)}

a < 0, b = am ([0 : 1], 1) O[0:1](m)

am > b, b < 0 ([0 : 0], 1) ∅

a = 0, b = 0 ([1 : 1], 1) Tot(OCP1(m))

Table 1.1: Computation of the fan of Tot(OCP1(m)), m > 0.

Hence, representing the values for m > 0 in R2 we get the fan in Figure 1.2 (b).
The data for m < 0 gives the fan in Figure 1.2 (a). In example 3.2.8 we will recover
the variety from its fan in homogeneous coordinates.

(a, b) ∈ Z2 limt→0Ψ(t) T · limt→0Ψ(t)

a, b > 0 ([1 : 0], 0) {([1 : 0], 0)}

a = 0, b > 0 ([1 : 1], 0) CP1

a > 0, b = 0 ([1 : 0], 1) O[1:0](m)

a < 0, b > −am ([0 : 1], 0) {([0 : 1], 0)}

a < 0, b = −am ([0 : 1], 1) O[0:1](m)

am > b ([0 : 0], 1) ∅

a = 0, b = 0 ([1 : 1], 1) Tot(OCP1(m))

Table 1.2: Computation of the fan of Tot(OCP1(m)), m < 0.

1.4 Morphisms

Definition 1.4.1. Let N1, N2 be two lattices with fans Σ1 ⊆ (N1)R and Σ2 ⊆ (N2)R.
A Z-linear mapping φ : N1 → N2 with induced map

φR(z ⊗ r) = φ(z)⊗ r

11



is compatible with Σ1,Σ2 if ∀σ1 ⊆ Σ1, ∃σ2 ⊆ Σ2 such that φ(σ1) ⊆ σ2.

Definition 1.4.2. A toric morphism φ of normal varieties φ : XΣ1 → XΣ2 is toric if
when restricted to the torus TN1 ⊆ XΣ1 , then φ|TN1

: TN1 → TN2 is a group homomor-
phism.

The purpose of this section is to show that for normal toric varieties, there is a one-
to-one relation between maps compatible with the fan structures and toric morphisms.

Lemma 1.4.3. Given two affine toric varieties Vi = Spec(C[Sσi
]) with σi ⊆ (Ni)R, i =

1, 2 a morphism φ : V1 → V2 is toric if and only if the corresponding map of coordinate
rings φ∗ : C[S2]→ C[S1] is induced by a semigroup homomorphism φ̂ : S2 → S1.

Proof. Suppose φ∗ : C[S2]→ C[S1] is induced by a semigroup homomorphism φ̂ : S2 →
S1. Since the character lattice of TNi

is Mi = ZSi we have a commutative diagram

C[S2]
φ∗

−−−−→ C[S1]y
y

CM2 −−−−→ C[M1].

Since TNi
= HomZ(Mi,C

∗), taking Spec, we have that φ|TN1
is a group homomorphism

and therefore φ is toric.
Conversely, a toric morphism induces a diagram as above, and by restriction to

lattice generators we get a group homomorphism φ̂ : S2 → S1 inducing φ∗.

Lemma 1.4.4. Let X1, X2 be toric varieties. Any toric morphism φ : X1 → X2 is
equivariant, i.e. the following diagram

TN1 ×X1
Φ1−−−−→ X1

φ|TN1
×φ

y
yφ

TN2 ×X2
Φ2−−−−→ X2

(1.6)

commutes, where Φi is the action of TNi
on Xi.

Proof. If we restrict Xi to TNi
in (1.6), the diagram certainly commutes, since φi and

Φi are group homomorphisms, and since TNi
is Zariski dense in Xi the whole diagram

in (1.6) commutes.

The following theorem is crucial in proving the correspondence between the concepts
of compatible maps and toric morphisms.

Theorem 1.4.5. Suppose we have a scrapc σi ⊆ (Ni)R and a lattice morphism φ : N1 →
N2. The induced homomorphism of tori

φ : TN1 → TN2 ; x⊗ z 7−→ φ(x)⊗ z

extends to a map of affine toric varieties φ : Vσ1 → Vσ2 if and only if φR is compatible
with σ1 and σ2.

Proof. Recall how φ : N1 → N2 induces all other maps:

φ|TN1
: TN1 → TN2 ; z ⊗Z t 7−→ φ(z)⊗Z t for z ∈ N1, t ∈ C∗,

φR : (TN1)R → (TN2)R; z ⊗Z t 7−→ φ(z)⊗Z t for z ∈ N1, r ∈ R.
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We denote φ|TN1
for the map on the torus and φ|Uσ1

for the map on the variety.
Suppose φR(σ1) ⊆ σ2. Let p ∈ Uσ1 \ TN1 . Then, for some Ψ ∈ σ1 ∩N1, s ∈ TN1 we

have p = limt→0Ψ(t) · s. Define φ : Uσ1 → Uσ2 as

φ|Uσ1
(p) := φ|Uσ1

(lim
t→0

Ψ(t) · s) = lim
t→0

(φ ◦Ψ(t)) · φ|TN1
(s) (1.7)

for p ∈ Uσ1 \ TN1 and φ(p) ∈ Uσ2 since φR(σ1) ⊆ σ2.
When p ∈ TN1 , p is necessarily Ψ(t) · s for s ∈ TN1 and ψ = 0 ∈ σ1 ∩ N, in which

case (1.7) restricts to φ|TN1
, so we have extended φ|TN1

to φUσ1 → Uσ2 .
Conversely, if φ|TN1

extends to φ|Uσ1
then for p ∈ Uσ1 \ TN1 as before, we get the

expression in (1.7). If φ|Uσ1
(p) ∈ Uσ2 , then limt→0(φ ◦ψ(t)) must reach its limit in Uσ2

but this requires that φ ◦ ψ ∈ σ2 ∩ N , for all ψ ∈ σ1 ∩ N , i.e. φ(ψ) ∈ σ2 ∩ N and
φR(σ1) ⊆ σ2.

Theorem 1.4.6. Let Σi ⊆ (Ni)R, i = 1, 2 be fans. If φ : N1 → N2 is a Z-linear map
compatible with Σ1,Σ2, then there exists a toric morphism φ : XΣ1 → XΣ2 such that

φ|TN1
= φ⊗ 1: N1 ⊗ C∗ → N2 ⊗ C∗.

Conversely, given a toric morphism φ : XΣ1 → XΣ2 it induces a Z-linear map φ : N1 →
N2 compatible with Σ1 and Σ2.

The proof of Theorem 1.4.6 requires the Orbit-Cone Correspondence (Theorem
2.3.5), so we delay its proof until section 2.3, but we can prove one of the two implica-
tions now:

Theorem 1.4.7. Let N1, N2 be lattices and let Σ1 ⊆ (N1)R, Σ2 ⊆ (N2)R be fans with
φ : N1 → N2 a Z-linear morphism compatible with Σ1,Σ2, then the φσ1 : Uσ1 → Uσ2

induced by φR(σ1) ⊆ σ2 ∈ Σ2 glue to form a morphism φ : XΣ1 → XΣ2. Moreover this
map is toric.

Proof. We take the open cover {Uσi
}σi∈Σ1 of XΣ1 and Theorem 1.4.5 gives us induced

morphisms of affine varieties:

φσi
: Uσi

→ Uφ(σi)
x⊗ z 7−→ φ(x)⊗ z.

Now, let σ1, σ
′
1 ∈ (Σ1)R be such that σ1∩σ

′
1 = τ ∈ (Σ1)R is a maximal face of both.

By the proof of Proposition 1.2.1 and as a consequence of Lemma 1.1.17, we obtain
Uσ1 ∩ Uσ′

1
= Uσ1∩σ′

1
= Uτ . Hence, for x ∈ τ ∩N1

φσ1 |Uσ1∩Uσ′

1
(x⊗ z) = φ(x)⊗ z = φσ′

1
|Uσ′

1
∩Uσ1

(x⊗ z)

using again Lemma 1.1.17. If we take σ1 = {0} then U{0} = TN1 and we get φ{0} :
TN1 → TN2 which is a group homomorphism by definition, so φ : XΣ1 → XΣ2 is a toric
morphism.
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Chapter 2

Applications of the fan

construction

2.1 Correspondence between fans and normal toric vari-

eties

We have described algorithms to pass from toric varieties to fans and vice versa. How-
ever it is interesting to know whether this is always possible, i.e. in which case there is
a bijection between fans and toric varieties. We recall what a normal variety is:

Definition 2.1.1. A ring R with field of fractions K is normal if every element of K
which is integral over R (i.e. a root of monic polynomial in R[x]) is actually in R.
A variety X is normal if it is irreducible and the local rings OX,p are normal for all
p ∈ X.

Proposition 2.1.2. If a toric variety X whose torus is a proper subset is normal, then
we can associate to it a fan Σ , so that X ∼= XΣ. Conversely from any given fan Σ we
can construct a toric variety XΣ which is normal.

Proof (Sketch). Normality is a local property, therefore XΣ is normal if and only if Uσ

is normal ∀σ ∈ Σ. Let V = Spec(C[Sσ]) = Uσ, for Sσ = σ∨ ∩M, σ ⊂ NR a scrapc
with the same dimension as the lattice (the case of a smaller dimension is similar, but
with torus factors). Let ρv1 , . . . , ρvr be the rays of σ, i.e. σ = Cone(v1, . . . , vr). Then
σ∨ =

⋂r
i=1 ρ

∨
i , and intersecting with M :

C[Sσ] = C[

r⋂

i=1

Sρi ] =

r⋂

i=1

C[Sρi ].

Since the intersection of normal rings is normal, it is enough to show C[Sρ] is normal
for any ray ρ ∈ σ(1). Let v = vρ, then since v is minimal, we can take a basis of N
such that

C[Sρ] = C[x1, x
±1
2 , . . . , x±1

n ] = C[x1, . . . , xn]x2···xn

is normal since it is a localisation of the normal ring C[x1, . . . , xn].
The proof that a normal toric variety arises from a fan is a consequence of Sumihiro’s

work [Sum75, Sum74]. A more modern version can be found in [Fin89, Fin93]

To agree with our convention that all varieties will be separated, (Definition 0.0.1),
we need:
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Proposition 2.1.3 ([CLSar, Theorem 3.1.5]). Given a fan Σ, the variety XΣ is sepa-
rated.

Notation. Since we are interested in analysing geometric properties arising from the
combinatorics of the fan we will restrict ourselves only to normal toric varieties and we
will often just call them toric varieties, implying they are normal. We will write XΣ to
denote a normal toric variety arising from a fan Σ.

Corollary 2.1.4. Let Σ ⊆ NR be a fan for some lattice N , with n = dimN = dimΣ.
Let f ∈ SL(N,Z) and Σ̃ = f(Σ). Then XΣ

∼= X
Σ̃
.

Proof. Let g ∈ SL(N,Z) such that f ◦ g = g ◦ f = IdN . In fact, all the invertible maps
compatible with Σ which preserve the lattice are of these form. Let Σ̃ = f(Σ). There
exist induced functions f : XΣ → X

Σ̃
, g : X

Σ̃
→ XΣ, with g ◦ f = IdXΣ

, f ◦ g = IdX
Σ̃
,

by theorem 1.4.6 so X ∼= X
Σ̃
.

We can summarise the pairing between fans and normal varieties of Proposition
2.1.2 and Corollary 2.1.4 in the following

Corollary 2.1.5. There is a one-to-one correspondence (up to isomorphism) between
fans and normal toric varieties.

2.2 Smoothness and compactness

Recall that a cone σ ⊂ NR is smooth if its primitive generators are part of a basis of
the lattice N .

Proposition 2.2.1. A toric variety XΣ is smooth if and only if Σ is smooth.

Proof. First we reduce to the affine case. Note that Σ is smooth if and only if all its
cones are smooth. Also a variety is smooth if and only if it is smooth in all open sets
of an open cover. Therefore it suffices to show it in the affine case, i.e.:

σ is smooth⇔ Uσ is smooth.

Also note that if an affine variety is smooth, then it is normal and by Corollary 2.1.5,
of the form Uσ, i.e. arising from a scrapc σ. Suppose we start with a smooth scrapc σ:

σ = Cone(e1, . . . , er) ⊂ R〈e1, . . . , er, e
±1
r+1, . . . , e

±1
n 〉.

Then, its dual cone is σ∨ = Cone(e1, . . . , er, e
±1
r+1, . . . , e

±1
n ) and the ring of coordinates

is:
C[Sσ] = C[σ∨ ∩ M ] ∼= C[e1, . . . , er, e

±1
r+1, . . . , e

±1
n ],

giving the affine variety Uσ = Spec(C[Sσ]) ∼= Cr × (C∗)n−r which is smooth.
Conversely, suppose we have σ ⊆ NR such that Uσ is smooth and let n = dimUσ =

dimNR. We can reduce to the case where dimσ = r = n, since in any other case
Uσ
∼= Uσ̃ × (C∗)n−r, where σ̃ ⊆ N/σ⊥ = Ñ with dim σ̃ = dim Ñ . In this case Uσ is

smooth if and only if Uσ̃ is smooth and σ is smooth if and only if σ̃ is smooth. Therefore
we suppose r = n.

By [CLSar, lemma 1.3.10] the minimum number of generators for Sσ, is dimTpσ ,
so:

n = dimUσ = dimTpσUσ ≥ {edges ρ ⊆ σ
∨} = dimσ ≥ n.
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Hence, σ∨ has n edges, generating M ⊆ Zn and by Lemma 1.1.5 σ = (σ∨)∨ is smooth,
since duality preserves smoothness.

Example 2.2.2. In the fans in Figure 1.2 we can see that all the two top-dimensional
cones are generated (as a semigroup) by the rays surrounding them and therefore their
toric varieties are smooth. To see the difference, consider the fan in Figure 2.1 for
C2/Z2. We know it has a singularity at the origin. This is reflected in the fan. Rather
than 2 vectors to generate the 2 dimensional cone as a semigroup, we need 3. This
results in a 3-dimensional affine space (C3) cut out by a monomial ideal (〈xy = z2〉)
which is the reason for the singularity.

v1 = (1, 2)

(0, 0)
v2 = (1, 0)

v3 = (1, 1)

Figure 2.1: Fan of C2/Z2.

Proposition 2.2.3. A toric variety XΣ is compact if and only if Σ is complete.

Proof. Suppose
⋃

σ∈Σ σ ( NR, then ∃Ψ: C∗ −→ X a one-parameter subgroup such
that its limit as t→ 0 is not in X so XΣ is not compact.

Conversely, if all one-parameter subgroups converge as t→ 0 thenX is compact.

Example 2.2.4. Just by looking at its fan in Figure 1.2, we know that the variety
Tot(OCP1(m)) is not compact. This is not surprising, since the total space of a vector
bundle over a variety is never compact.

2.3 The Orbit-Cone Correspondence

Given the cone σ ⊆ Σ ⊆ NR and its affine variety Uσ, all the geometric information
(subvarieties, one-parameter subgroups, singularities) invariant under the torus action
is contained in the combinatorics of the cone. In this section we consider a fixed
σ ⊆ Σ ⊆ NR.

The following lemma extends to semigroup homomorphisms the bijection between
points of an affine variety and maximal ideals of its ring of regular functions:

Lemma 2.3.1 ([CLSar, Prop. 1.3.1]). Let V = Spec(C[S]) be an affine toric variety
(not necessarily normal) where S is a semigroup with basis m1, . . . ,mr. Then, there is
a bijection:

U ⇐⇒ Hom(S,C)

p 7−→ (δ : m 7→ χm(p)) (2.1)

(δ(m1), . . . , δ(mr)) 7−→(δ : S → C).
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We have a semigroup homomorphism Sσ −→ Z2 ⊂ C∗ ⊂ C given by:

m 7−→

{
1 m ∈ Sσ ∩ σ

⊥ = σ⊥ ∩M

0 otherwise.
(2.2)

By equation (2.1) in Lemma 2.3.1, (2.2) gives a unique distinguished point γσ for σ.

Proposition 2.3.2. Let σ ⊂ NR, u ∈ N , then:

u ∈ σ ⇔ lim
t→0

λu(t) = γσ.

Proof.

lim
t→0

λu(t) exists in Uσ ⇔ lim
t→0

χm(λu(t)) ∈ C ∀m ∈ Sσ

⇔ 〈m,u〉 ≥ 0 ∀m ∈ σ∨ ∩M

⇔ u ∈ (σ∨)∨ = σ,

where in the last equality we use Lemma 1.1.5.
If u ∈ σ ∩N , then limt→0 λ

u(t) corresponds to the homomorphism

m ∈ σ∨ ∩M −→ lim
t→0

t〈m,u〉.

by (2.1). If u ∈ RelInt(σ) (the relative interior of σ with respect to the subspace
topology), then 〈m,u〉 > 0 for m ∈ Sσ ∩ σ

⊥ and 0 otherwise, which is precisely γσ as
in (2.2).

Definition 2.3.3. The torus orbit of a cone σ ⊆ Σ ⊆ NR is

O(σ) = TN · γσ ⊂ XΣ.

Recall that if dim(σ) = dimNR, then γσ is fixed by TN . Therefore it is natural to
expect a dimension reversing correspondence between orbits and cones. The following
way of expressing the orbits will be useful to prove the Orbit-Cone Correspondence:

Lemma 2.3.4 ([CLSar, Lem. 3.2.5]).

O(σ) = {γ : Sσ → C : γ(m) 6= 0⇔ m ∈ σ⊥ ∩M} ∼= HomZ(σ
⊥ ∩M,C∗).

Theorem 2.3.5 (Orbit-Cone Correspondence). Let XΣ be the toric variety of Σ ⊆
NR, dimNR = n.

(i) There is a bijection

{σ ⊆ Σ}
1:1
←→ {TN -orbits in XΣ}

σ ←→ O(σ) ∼= HomZ(σ
⊥ ∩M,C∗)

with dimO(σ) = n− dimσ.

(ii) The affine variety of a cone is the union of the orbits of its faces, i.e.:

Uσ =
⋃

τ face of σ

O(τ).
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(iii) τ is a face of σ if and only if O(σ) ⊆ O(τ) and

O(τ) =
⋃

τ is a face of σ

O(σ)

where O(τ) is the closure of O(τ) both in the Zariski and classical topologies.

Proof. We prove only parts (i) and (ii) although the statement of the dimension of σ
in (i) will be proved later in Theorem 3.3.1 for a different version of this theorem for
the closures of the orbits. A proof of (iii) can be found in [CLSar, Theorem 3.2.6].

Let O be a TN -orbit. We know that XΣ is covered by Uσ, and that these are TN -
invariant. So O ⊆ Uσ for some σ. Since Uσ1 = Uσ2 = Uσ1∩σ2 by construction, we can
choose the smaller σ such that O ⊆ Uσ. Now let p ∈ O, then p = s · limt→0 λ

u(t), for
s ∈ (C∗)n, u ∈ σ. Denote by δ the semigroup homomorphism corresponding to p under
(2.1), and consider m ∈ Sσ such that δ(m) 6= 0. Then, since p = limt→0 λ

u(t) · s for
some s ∈ TN ,

0 6= δ(m) = χm(p) = χm
(
lim
t→0

λu(t) · s
)
,

if and only if

χm
(
lim
t→0

λu(t)
)
= lim

t→0
t〈m,u〉 6= 0,

if and only if 〈m,u〉 = 0. i.e. if δ(m) 6= 0, then m is in a face of σ∨. By Lemma 1.1.5,
there is a face τ of σ such that:

{m ∈ Sσ : γ(m) 6= 0} = σ∨ ∩ τ⊥ ∩M.

Hence p ∈ Uτ and hence τ = σ since σ was minimal. Now, by Lemma 2.3.4, γ ∈ O(σ),
so O(σ) = O since they have a non-empty intersection (and orbits are either disjoint
or equal).

To prove (ii), if τ is a face of σ, then O(τ) ⊆ Uτ ⊆ Uσ. By part (i) all orbits are of
the form O(τ) and since Uσ is a union of orbits we are done.

We immediately obtain the following

Corollary 2.3.6. O(σ), for σ ∈ Σ, are all the TN invariant subvarieties of XΣ. In
particular, Dρ = O(ρ), for ρ ∈ Σ(1), are all TN -invariant codimension-1 subvarieties.

Example 2.3.7. In tables 1.1 and 1.2 we presented the closure of all the TN -orbits of
Tot(OCP1(m)) for any m for the different cones. Since we did this for all the cones of
the fan Σ, these are all the orbits of Tot(OCP1(m)).

Observation 2.3.8. By the Orbit Cone Correspondence (Theorem 2.3.5), the irre-
ducible components of XΣ \TN are Dρ = ρ for ρ ∈ Σ(1), since TN is an open dense set
of XΣ so its complement is a union of irreducible components and Dρ ∩ TN = ∅.

Now that we have the Orbit-Cone Correspondence we can finish the proof of The-
orem 1.4.6. This shows the potential of Theorem 2.3.5 to determine the geometry of
the toric variety from its fan.

Theorem (Theorem 1.4.6). Let Σi ⊆ (Ni)R, i = 1, 2 be fans. If φ : N1 → N2 is a Z-
linear map compatible with Σ1,Σ2, then there exists a toric morphism φ : XΣ1 → XΣ2

such that
φ|TN1

= φ⊗ 1: N1 ⊗ C∗ → N2 ⊗ C∗.
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Conversely, given a toric morphism φ : XΣ1 → XΣ2 it induces a Z-linear map φ : N1 →
N2 compatible with Σ1 and Σ2.

Proof. The first assertion was proved in Theorem 1.4.7. For the second, let u ∈ N1

induce the one-parameter subgroup λu : C∗ → TN2 . Since φ|TN1
is a group homo-

morphism we obtain by composition φ|TN1
◦ λu : C∗ → TN2 an element φ(u) ∈ N2

and linearity is preserved.We have therefore defined φ : N1 → N2 mapping Σ1 into Σ2.
Now, we need to see that φ is compatible with Σ1 and Σ2. Lemma 1.4.4 guarantees that
TN1-orbits O1 ⊆ XΣ1 are mapped to TN2-orbits and the Orbit-Cone Correspondence
guarantees Oi = O(σi) for some σi ⊂ (Σi)R, i = 1, 2. So, we have φ(σ1) ⊆ σ2 ∈ Σ2, for
some σ2.

Let τ1 be a face of σ1. We have τ2 ∈ Σ2 such that φ(τ1) = τ2 by the same argument.
By Theorem 2.3.5 (iii), O(σ1) ⊆ O(τ1) and since φ is continuous, φ(O(σ1)) ⊆ O(τ2). So
O(σ2) ⊆ O(τ2) and τ2 is face of σ2. We obtain that φ maps Uφ1 into Uφ2 and Theorem
1.4.5 tells us that φR(σ1) ⊆ σ2 so φ is compatible with Σ1 and Σ2.

2.4 Computing divisor classes

Computing divisor classes can be a difficult problem in Algebraic Geometry. The
following theorem is the basic tool to work with divisor classes:

Theorem 2.4.1 ([Har77, 6, Proposition 6.5 (c), p. 133]). Let U be a nonempty Zariski
open subset of a normal variety X and let D1, . . . , Ds be the irreducible components of
X \ U that are prime divisors. Then the sequence

s⊕

j=1

ZDj −→ Cl(X) −→ Cl(U)→ 0

is exact, where the first map sends
∑s

j=1 ajDj to its divisor class in Cl(X) and the
second is induced by restriction to U.

However, in the case of toric varieties this result can be improved, as we will see in
Theorem 2.4.4. This theorem will be crucial in Chapter 3. Furthermore, in example
2.4.7 we give two ways to compute divisor classes.

Definition 2.4.2. The group of torus-invariant Weil divisors of XΣ is

DivTN
(XΣ) :=

⊕

ρ∈Σ(1)

ZDρ
∼= ZΣ(1) ⊆ Div(XΣ).

Since for all Dρ ∈ DivTN
(XΣ), OXΣ,Dρ is a discrete valuation ring (DVR) (see

[Har77, p. 130]), it has an associated valuation (see [AM69, 1, Prop. 9.2, p. 94]):

νρ := νDρ : C(XΣ)
∗ −→ Z.

Note that for m ∈M, χm : TN → C∗ extends to XΣ 99K C∗ since TN is Zariski open.

Proposition 2.4.3. Let XΣ be a toric variety, ρ ∈ Σ(1) with minimal generator uρ,
then

νρ(χ
m) = 〈m,uρ〉. (2.3)
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Moreover the principal divisor of χm is

div(χm) =
∑

ρ∈Σ(1)

〈m,uρ〉Dρ. (2.4)

Proof. First we choose a convenient basis for N . Since Uρ is minimal we can complete
a basis {e1, . . . , en} of N with e1 = uρ such that N = Zn and uρ = Cone(e1) and

Uρ
∼= Spec(C[x1, . . . , x

±1
2 , . . . , x±1

n ]) = Spec(C[x1, . . . , xn])x1 = C× (C∗)n−1,

where x1, . . . , xn are the characters of the dual basis of {e1, . . . , en}. Hence

OXΣ,Dρ
∼= C[x1, . . . , xn]x1 .

By [GH78, pp. 130-131], the valuation for Dρ is νρ(f) = n ∈ Z where

f ∈ C(x1, . . . , xn)
∗, f = xn1

g

h
,

with g, h not divisible by x1. Now, since χ
m ∈ C(x1, . . . , xn)

∗ ∀m ∈M

νρ(χ
m) = νρ(x

〈m,e1〉
1 · · ·x〈m,en〉

n ) = 〈m, e1〉 = 〈m,uρ〉.

Theorem 2.4.4. For a toric variety XΣ without torus factors the sequence

0 −→M −→ DivTN
(XΣ) −→ Cl(XΣ) −→ 0 (2.5)

is exact, where the first map sends m to div(χm) and the second map sends a divisor
to its divisor class.

Proof. From Theorem 2.4.1 and Observation 2.3.8 we have the exact sequence:

DivTN
(XΣ) −→ Cl(XΣ) −→ Cl(TN ) −→ 0.

Since C[X1, . . . , Xn] is a unique factorization domain (UFD) (see [GH78, p. 10]), so is

C[X1, . . . , Xn]X1···Xn
∼= O(C∗)n

∼= OTN
,

thus its class group vanishes, Cl(TN ) = 0 (see [Har77, 6, Prop 6.2, p. 131])and conse-
quently DivTN

(XΣ)→ Cl(XΣ) is surjective.

Clearly the composition

M −→ DivTN
(XΣ) −→ Cl(XΣ)

is zero. Suppose D ∈ DivTN
(XΣ) maps to 0, i.e. D = div(f). Then, since the support

of D is in
⋃

ρ∈Σ(1)Dρ, div(f) = 0 on TN and f : TN ∼= C[M ] → C∗ is a morphism by
[Har77, 6, Prop. 6.3A, p. 132], so f = cχm with c ∈ C∗, m ∈ M . It follows that
D = div(cχm) = div(χm).

To see that m→ div(χm) is injective, suppose div(χm) = 0, i.e. 〈m,uρ〉 = 0, ∀f ∈
Σ(1), then m = 0 since uρ span NR (this is where we use that XΣ has no torus
factors).
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Observation 2.4.5. Cl(XΣ) is a finitely generated Abelian group, i.e.

Cl(XΣ) ∼= Zl ×H for H ∼= Zp
α1
1
⊕ · · · ⊕ Zpαr

r
finite.

Corollary 2.4.6. In particular, for a normal toric variety XΣ with no torus factors any
divisor is linearly equivalent to a torus-invariant divisor, i.e. D ∈ Div(XΣ), [D] = [Dρ]
in Cl(XΣ) for ρ ∈ Σ(1).

Example 2.4.7. Theorem 2.4.4 makes it extremely easy to compute classes of divisors
in toric varieties. Consider for instance XΣ = Tot(OP1(−k)) with k > 0 as in Figure
1.2 (i). The map

A : M ∼= Z2 −→ DivTN
(XΣ) ∼= Z3, A =



−1 k
0 1
1 0


 .

Its cokernel is one-dimensional since

Coker(A) = Ker(AT ) = {(x, y, z) ∈ Z3 : − x+ z = 0, kx+ y = 0} ∼= Z,

so Cl(XΣ) ∼= Z. Another way of seeing this is by linear equivalence of divisors. We
take the standard basis {e1, e2} for M = Z2 as in Figure 1.2 and compute:

0 ∼ div(χe1) = 〈e1, u1〉D1 + 〈e1, u2〉D2 + 〈e1, u3〉D3 = D1 −D2,

0 ∼ div(χe2) = 〈e2, u1〉D1 + 〈e2, u2〉D2 + 〈e2, u3〉D3 = kD2 +D3.

So in Cl(XΣ), [D1] = [D2], [D3] = −k[D2] and Cl(XΣ) ∼= Z〈[D1]〉 ∼= Z.

Theorem 2.4.8. If the fan Σ of XΣ has all its primitive generators lying on a hyper-
plane of NR, then XΣ is Calabi-Yau.

Proof. Let Di be all the toric divisors with corresponding primitive generators ui. If
all the primitive generators lie on a hyperplane, then we can choose a basis for N such
that the first coordinate of each of them is 1, i.e. uin = 1. But then:

0 ∼ div(χe1) = 〈e1, u1〉D1 + · · ·+ 〈e1, ur〉Dr =
∑

Di.

Hence, since XΣ is toric, [CLSar, Thm. 8.2.3] implies that

K ∼= OXΣ
(−
∑

Di) ∼= OXΣ
,

where OX(D) is the sheaf of the Weil divisor D. Consequently the canonical divisor is
trivial and XΣ is Calabi-Yau.

21



Chapter 3

Toric varieties as good quotients.

3.1 GIT preliminaries

One of the nicest features of toric varieties is that they can be seen as GIT quotients
of a Zariski open subset of Cr modulo a group action. Explaining this construction is
the main goal of this section. Geometric Invariant Theory (GIT) is a subject in its own
right so we briefly recall what we understand as GIT quotients.

Let G be a reductive group (i.e. an affine algebraic group whose maximal con-
nected solvable subgroup is a torus). Examples of these include finite groups, tori,
semisimple groups or direct products of any of those.

Let X = Spec(R) be an affine variety and suppose that G acts algebraically on
X, i.e. the map

φg : X −→ X; x 7−→ g · x

is a morphism and moreover, since G is an algebraic group,

G×X −→ X; (g, x) 7−→ φg(x)

is also a morphism.

We have an induced action of G on R induced by φ∗g : R −→ R:

g · f = φ∗g−1(f), (g · f)(x) = f(g−1 · x), ∀x ∈ X.

The ring of invariants is RG = {f ∈ R : g ·f = f, ∀g ∈ G} and the set of G-orbits
X/G = {G · x : ∀x ∈ X}.

The goal of GIT is to decide whether X/G ∼= Spec(RG), i.e. whether the set of
orbits can be made into an affine variety. Unfortunately this is not true in general. In
the case of reductive groups, the closest we can get to is [MFK94, Thm. 1.1]:

{closed G-orbits in X} ∼= Spec(RG). (3.1)

Let π : X −→ Y be a surjective morphism where X and Y are abstract varieties. Let G
act algebraically on X. If π is constant on G-orbits with Y ∼= {closed G-orbits in X},
then we say that π is a good categorical quotient. There are further technical points
that we have omitted (see [MFK94] for a detailed exposition) but this pseudo-definition
serves our purposes. The usual notation for a good categorical quotient of X by G is

π : X −→ X//G.
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When G is reductive the quotient is always a good categorical one, and the projection
π : Spec(R) −→ Spec(RG) ∼= Spec(R)//G as in (3.1) is just the case where X is affine.

In fact, it is enough to guarantee a good categorical quotient that isomorphism (3.1)
holds for each open set in an affine open cover of Y (see [MFK94, Rmk. (5) p. 8]).

If all the G-orbits in X are closed then X//G ∼= X/G and we say that

π : X −→ X/G

is a good geometric quotient. Note that G being reductive does not guarantee that
the quotient is a good geometric one.

3.2 Toric varieties as GIT quotients

As we will prove in this section normal toric varieties XΣ can be expressed as good
categorical quotients of the form:

XΣ = Cr \ Z(Σ)//G, r = |Σ(1)|,

where G is reductive and Z(Σ) is a union of spaces V(xi1 , . . . , xik).

First, given a generic toric variety we will define the group G, then Z(Σ) and see
how X

Σ̃
:= Cr \ Z(Σ) is a normal toric variety for some fan Σ̃. We will see how G is a

reductive group that acts on X̃Σ. Finally we will prove that XΣ is isomorphic to the
set of closed orbits of X

Σ̃
.

Let Ñ = ZΣ(1) and {eρ : ρ ∈ Σ(1)} be the standard basis for Ñ . As usual, we
assume that XΣ has no torus factors (i.e. ρ spans NR as a vector space). Hence, we
can apply HomZ(−,C

∗) to the exact sequence in (2.5) to obtain

1→ HomZ(Cl(XΣ),C
∗)→ HomZ(Z

Σ(1),C∗)→ HomZ(M,C∗)→ 1, (3.2)

which is exact due to the fact that HomZ(−,C
∗) is left exact. Right-exactness follows

from the fact that C∗ is a divisible group and therefore injective as a Z-module. We
use the convention HomZ(0,C

∗) = 1.

Define
G := HomZ(Cl(XΣ),C

∗) ≤ HomZ(Z
Σ(1),C∗) ∼= (C∗)Σ(1). (3.3)

Hence, (3.2) becomes an exact sequence of affine algebraic groups:

1 −→ G −→ T
Ñ
−→ TN −→ 1 (3.4)

where the second map sends eρ ⊗ t to uρ ⊗ t or in terms of (3.2) f ∈ HomZ(Z
Σ(1),C∗)

to f ◦ div ∈ HomZ(M,C∗). This automatically implies the following lemma.

Lemma 3.2.1. Given a basis {e1, . . . , en} for M , G can be expressed

G = {(tρ) ∈ (C∗)Σ(1) :
∏

ρ

t
〈m,uρ〉
ρ = 1 ∀m ∈M}

= {(tρ) ∈ (C∗)Σ(1) :
∏

ρ

t
〈ei,uρ〉
ρ = 1 for all 1 ≤ i ≤ n}.

Lemma 3.2.2 ([CLSar, Lemma 5.11]). G is the character group of Cl(XΣ).
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Given Σ ⊆ N we construct the fan Σ̃ ⊆ ÑR as

Σ̃ = {σ̃ : σ ∈ Σ}, σ̃ = Cone(eρ : ρ ∈ σ(1)) ⊆ ÑR = RΣ(1).

Furthermore, define the fan Σ̃0 consisting of the cone

σ0 = Cone(eρ : ρ ∈ Σ(1))

and its faces. The fan Σ̃ is a subfan of Σ̃0 containing some faces of σ0.

Definition 3.2.3. The exceptional set of a fan Σ ⊆ N is

Z(Σ) =
⋃

C

V(xρ : ρ ∈ C) ⊆ CΣ(1),

where C ⊆ Σ(1) is all possible subsets of Σ(1) which do not share a cone σ in Σ.

Proposition 3.2.4. For a fan Σ ⊆ NR and Σ̃ ⊆ ÑR as above

(i) X
Σ̃
= C

Σ(1) \ Z(Σ).

(ii) eρ 7→ uρ defines a map of lattices π̃ : Ñ → N compatible with Σ̃ and Σ, inducing
a toric morphism X

Σ̃
→ XΣ constant on G-orbits.

Proof. Σ̃0 is the fan of CΣ(1) and the toric variety of Σ̃ is, by the Orbit-Cone Corre-
spondence (Theorem 2.3.5), given by CΣ(1) without the orbits corresponding to cones
in Σ̃0 \ Σ̃, i.e. those which do not share a cone. The union of the deleted orbits is
precisely the exceptional set Z(Σ). This proves (i).

The map of lattices is clearly compatible with Σ̃ and Σ since σ̃ gets mapped to σ.
The correspondent map of tori is π : T

Ñ
→ TN , the same as in (3.4), so by the definition

of G in (3.3) and the fact that π is a homomorphism, we have

π(g · x) = π(g) · π(x) = π(x) ∀x ∈ X
Σ̃
, ∀g ∈ G ⊆ (C∗)Σ(1).

Lemma 3.2.5. For the group G defined from XΣ as in (3.3):

(i) G is reductive.

(ii) G acts on CΣ(1) \ Z(Σ).

Proof. By (3.3) and Observation 2.4.5 we have

G = HomZ(Cl(XΣ),C
∗) ∼= HomZ(Z

l ×H,C∗) ∼= (C∗)l ×HomZ(H,C
∗),

which is the product of a torus and a finite Abelian group and therefore reductive,
proving (i).

The torus (C∗)Σ(1) acts on CΣ(1) by coordinatewise multiplication1 and since Z(Σ) is
a union of coordinate spaces, the torus leaves CΣ(1)\Z(Σ) invariant. Since G ≤ (C∗)Σ(1)

the same is true for G.

1Often called diagonal matrix multiplication.
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The given method to obtain this quotient is sometimes referred to as Cox’s construc-
tion after David Cox who originally published the following two theorems in [Cox95].
However, as Cox himself mentions in his article, versions of these theorems (for instance
for symplectic manifolds) were proved around the same time in [Aud91], [Mus94].

In the case of simplicial fans, the quotient becomes geometrical. The original proof
of theorems 3.2.6 and 3.2.7 can be found in [Cox95, Theorem 2.1]. A clearer version
using more modern notation can be found in [CLSar, Theorem 5.1.10].

Theorem 3.2.6. Let XΣ be a toric variety without torus factors and G as in (3.3).
Then the map π : X

Σ̃
−→ XΣ in Proposition 3.2.4 is a good categorical quotient for the

action of G on X
Σ̃
, i.e.

XΣ
∼= X

Σ̃
//G = (CΣ(1) \ Z(Σ))//G.

Proof. First, note that we can reduce to the case of a single cone, since it is enough to
find a GIT quotient for each open subset of an affine cover, as long as G acts on all of
them. A natural choice of affine cover will be Uσ where σ ∈ Σ.

Therefore we need to show that

πσ := π|π−1(Uσ) : π
−1(Uσ) −→ Uσ

is a good categorical quotient for the group G. Note that π−1(Uσ) = Uσ̃ for σ̃ ⊂ ZΣ(1).
We will work with coordinate rings instead of with Zariski open sets. The semigroup
of σ̃ is:

Sσ̃ := σ̃∨ ∩ ZΣ(1) = {(aρ) ∈ ZΣ(1) : aρ ≥ 0 for ρ ∈ σ(1)}.

The coordinate ring

R := C[Sσ̃] = C[
∏

ρ

x
aρ
ρ : aρ ≥ 0 ∀ρ ∈ σ(1)] = C[xρ : ρ ∈ Σ(1)]xσ̃ ,

is the localisation of the affine coordinate ring of Cr, r = |Σ(1)| at xσ̃ =
∏

ρ 6∈σ(1) x
ρ.

Hence, the map π∗ : C[Uσ̃]→ C[Uσ] is induced by

M → ZΣ(1) m 7→ (|m,uρ|) (3.5)

by Theorem 1.4.5, and |m,uρ| ≥ 0, for all ρ ∈ σ(1) and all m ∈ σ̃ ∩ ZΣ(1).

By Proposition 3.2.4 (ii), G acts on Xσ̃ (and therefore on R) and it is constant in
G-orbits. Together with the fact that G is reductive (Lemma 3.2.5) we obtain that

Π∗
σ : C[σ∨ ∩M ] −→ RG ⊆ R (3.6)

induces a good categorical quotient:

Uσ̃ −→ Spec(RG) = Uσ̃//G.

Finally, we need to prove C[σ∨ ∩M ] ∼= RG via Π∗
σ as in (3.5) and (3.6). This implies

Uσ
∼= Uσ̃//G.

For injectivity take χm, χm′

∈ C[σ∨ ∩M ] and suppose that they map to the same
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element via Π∗
σ:

Π∗(χm) = Π∗(χm′

)

⇔
∏

ρ∈Σ(1)

t
〈m,uρ〉
ρ =

∏

ρ∈Σ(1)

t
〈m′,uρ〉
ρ

⇔ 〈m,uρ〉 = 〈m
′, uρ〉 ∀ρ ∈ Σ(1)

⇔ m = m′.

For surjectivity let f = Σαcαx
α ∈ RG. Since RG ⊆ R, xα =

∏
ρ x

aρ
ρ where aρ ≥ 0 for

all ρ ∈ σ(1). Moreover, since f is G-invariant, for any (tαρ ) ∈ G we get

∑

α

cαx
α =

∑

α

cαt
αxα

where tα is the character of T = (tρ) ∈ G and tα = 1 whenever cα 6= 0. By Lemma 3.2.2,
those tα are the characters of Cl(XΣ) and therefore since they are trivial as characters,
by (2.5), α = (αρ) come from elements m ∈ M , i.e. α = 〈m,uρ〉, for all ρ ∈ Σ(1).
Therefore, since xα ∈ R we get that

〈m,uρ〉 = aρ ≥ 0 ∀ρ ∈ σ(1),

so Π∗
σ is surjective.

Theorem 3.2.7. If XΣ is a toric variety with no torus factors and Σ is simplicial then

XΣ
∼= (CΣ(1) \ Z(Σ))/G,

i.e. X
Σ̃
−→ XΣ is a good geometric quotient for the action of G on X

Σ̃
.

Example 3.2.8. We now show how the fan in Figure 1.2 b) of Example 1.3.1 gives
the variety Tot(OCP1(m)) for m > 0 using the GIT construction. The case m < 0 is
analogous. The subsets of rays not generating a cone are {v1, v2} and {v1, v2, v3}, but
since one is contained in another we just need to consider the smallest (the order of
inclusion is reversed when we pass to the subvarieties) i.e.:

Z(Σ) = V(z0, z1) ∪V(z0, z1, θ) = V(z0, z1)

(We assign the coordinate θ to v3 to agree with the notation in example 1.3.1). The
second map in the exact sequence (3.4) is given by:

φ : (C∗)3 −→ (C∗)2 φ(t1, t2, t3) = (t1t
−1
2 , t−m

2 t3)

and therefore φ(t1, t2, t3) = (1, 1) ⇔ t1 = t2, t
m
2 = t3. This can also be seen using

lemma 3.2.1. Hence, G = Ker(φ) = 〈(t, t, tm)〉, and the variety is:

XΣ =
C3 \V(z0, z1)

〈(t, t, tm)〉
.

Note that the quotient is geometric since the fan is simplicial.The group action identifies
the points (z0, z1, θ) ∼ (z0t, z1t, θt

m). Since z0z1 6= 0, we can see the points as (1, z1z0 ,
θ
zm0

)

when z0 6= 0 and in a similar way when z1 6= 0. Giving values as in equation (1.4) of
Example 1.3.1 we get the transition functions in (1.5).
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Note we took an arbitrary ordering for the rays. A different ordering would give a
permutation of the coordinates.

3.3 T -invariant subvarieties

We prove a version of the Orbit-Cone correspondence as well as the dimension statement
in Theorem 2.3.5 (i) using the GIT quotient. Let σ ∈ Σ be a simplicial cone generated
from the semigroup of rays ρ1, . . . , ρk. Note that

Zσ = {x ∈ XΣ|xρ1 = . . . = xρk = 0}/G = Z̃σ/G (3.7)

has no points in Z(Σ) since the rays generate a cone and therefore it is a codimension
k-subvariety, T -invariant by construction.

Theorem 3.3.1. Let Σ be a simplicial fan. Then, the assignment σ −→ Zσ gives an
order reversing correspondence:

{cones in the fan}
1:1
←→ {non empty T -invariant subvarieties}.

Proof. The map from cones to varieties is given by (3.7) and the order reversing is clear
(adding one ray increases the codimension by 1).

Given a T -invariant subvariety Z ⊆ XΣ, it arises from Z̃ ⊆ X
Σ̃
quotient out by G.

Since Σ is simplicial, by Theorem 3.2.7 the quotient is geometric. For Z̃ to be invariant
by G and T

Ñ
, it has to be a space Z̃ = V(xi1 , . . . , xir) ⊆ Cr where r = |Σ(1)| by the

coordinate expression of G in Lemma 3.2.1. Thus Z = Z̃/G has the form in (3.7).
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Chapter 4

Resolution of singularities

Definition 4.0.2. Given Σ,Σ′ ⊆ NR, we say that Σ′ ⊆ NR refines Σ if Id: (NR,Σ
′)→

(NR,Σ) is compatible with Σ′,Σ and their supports are the same. By Theorem 1.4.6
Id induces a toric map XΣ′ → XΣ.

Example 4.0.3. Figure 4.1 shows on the right side a simplicial, non-smooth fan Σ =
〈Cone(e1, 2e2 + e1)〉 and its refinement Σ′ = 〈Cone(e1, e1 + e2),Cone(e1 + e2, 2e2 + e1)〉

Figure 4.1: Fans of C2/Z2 after and before blowing up at 0.

In Proposition 2.2.1 we saw that for a normal toric variety XΣ to be smooth, every
cone σ, the intersection σ∩N must be generated by a Z basis. Otherwise extra vectors
are required to generate its affine patch. The way singularities arise in this situation
was illustrated by example 2.2.2. An obvious way of smoothing out σ is to refine it by
adding rays ρvi generated by these extra vectors. The resulting fan Σ′ will be smooth
and we have a map XΣ′ → XΣ. This is the general philosophy underlined in what
follows. We will refine the fan by turning the non-simplicial cones into simplicial and
then the non-smooth cones in the fan into smooth. The advantage of this approach is
that it is purely algorithmical and combinatorial, constructing the resolution.

Definition 4.0.4. Given a fan Σ ⊆ NR and a primitive element v ∈ |Σ| ∩N \ {0}, the
star subdivision of Σ at v, Σ∗(v) is the following set of cones:

(i) σ where v 6∈ σ ∈ Σ.

(ii) Cone(τ, v) where v 6∈ τ ∈ Σ and τ ∪ {v} ⊆ σ ∈ Σ.

The following lemma is intuitive, but its proof (see [CLSar, Lem. 11.1.3]) is some-
what technical and lengthy:

28



Lemma 4.0.5. Σ∗(v) is a fan, and moreover, it is a refinement of Σ. The 1-dimension-
al cones of Σ∗(v) are the 1-dimensional cones of Σ plus the ray ρv = Cone(v) generated
by v, i.e.

Σ∗(v)(1) = Σ(1) ∪ {ρv}.

Example 4.0.6. The fan Σ′ in example 4.0.3 is the star subdivison of Σ at v = (1, 1),
i.e Σ′ = Σ∗(v).

The following lemma requires a lengthy analysis on Q-Cartier divisors, proper and
projective morphisms on toric varieties, so we refer the reader to the reference:

Lemma 4.0.7 ([CLSar, Prop. 11.1.6]). The star subdivision Σ∗(v) of an arbitrary fan
Σ has the following properties

(i) The prime divisor Dρv is Q-Cartier.

(ii) The induced toric morphism XΣ∗(v) → XΣ is projective.

The first step towards the desingularisation is to make the fan simplicial:

Proposition 4.0.8. Every fan Σ has a refinement Σ′ with the following properties

(i) Σ′ is obtained from Σ by a sequence of star subdivisions.

(ii) Σ′ is simplicial.

(iii) Σ′ contains every simplicial cone of Σ.

(iv) The induced toric morphism X ′
Σ → XΣ is projective.

Proof. We will obtain Σ′ from Σ via star subdivisions preserving the edges. The other
parts will follow. Let

A = {ρ ∈ Σ(1) : Dρ is not Q-Cartier}.

If |A| = 0, then all divisors are Q-Cartier and [CLSar, Prop. 4.27] implies that Σ is
simplicial. If |A| > 0, pick ρ such that Dρ is not Q-Cartier and let uρ be its generator.
Lemma 4.0.5 implies Σ∗(uρ)(1) = Σ(1) since ρ ∈ Σ(1) and Lemma 4.0.7 implies that
Dρv is Q-Cartier and XΣ∗(uρ) → XΣ is projective. By finite induction we repeat this
procedure until we obtain the required Σ′ satisfying parts (i) and (ii). (iv) follows since
the composition of projective morphisms is projective. For (iii), let σ′ ⊂ Σ′ be mapped
into σ simplicial. Since Σ(1) = Σ′(1), σ′(1) ⊆ σ(1) and σ′ is a face of σ, since σ is
simplicial. But

σ =
⋃

σ′∈Σ′

σ′⊆σ

σ′,

so σ = σ′ for some σ′ ∈ Σ′.

Before subdividing simplicial fans into smooth ones, we need a tool to measure how
far a simplicial fan is from being smooth.

Definition 4.0.9. Let σ = Cone(u1, . . . , ud) ⊂ NR be a simplicial cone and Nσ =
Span(σ) ∩N , then the multiplicity of σ is

mult(σ) = [Nσ : Zu1 + . . .+ Zud],
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and the multiplicity of a fan Σ is

mult(Σ) = max
σ∈Σ

mult(σ).

Lemma 4.0.10 ([CLSar, Prop. 11.1.8]). Let σ be a simplicial cone. Then, for ui and
Nσ as in definition 4.0.9, we have:

(i) mult(σ) is the number of points in Pσ ∩N where

Pσ = {
d∑

i=1

λiui : 0 ≤ λi < 1}

(ii) Let e1 . . . , ed be a basis of Nσ and write ui =
∑
aijej. Then mult(σ) = | det(aij)|.

(iii) mult(τ) ≤ mult(σ) whenever τ is a face of σ.

Example 4.0.11. The multiplicity of σ = Cone(e1, e1 + 2e2) as in the first cone in
figure 4.1 is 2. Note a cone has a multiplicity of one if and only if it is smooth.

Theorem 4.0.12. Every fan Σ has a refinement Σ′ with the following properties:

(i) Σ′ is smooth.

(ii) Σ′ contains every smooth cone of Σ.

(iii) Σ′ is obtained from Σ by a sequence of star subdivisions.

(iv) The toric morphism φ : XΣ′ → XΣ is a projective resolution of singularities.

Proof. Since all smooth cones are simplicial, we can apply Proposition 4.0.8 and assume
Σ is simplicial. We will build Σ′ by a sequence of star subdivisions of non-smooth cones
until we make them smooth. Once we have done this, lemma 4.0.7 (ii), Proposition
4.0.8 (iv) and the fact that the composition of projective morphisms is projective will
give us a projective resolution φ : X ′

Σ → XΣ. The fact that φ is an isomorphism on the
smooth locus of XΣ, as in definiton 0.0.4 is a consequence of part (ii) of this theorem
and remark 1.1.10 (ii).

As in the proof of Proposition 4.0.8, we will do a finite induction, this time on
mult(Σ). The inductive step will be to find a subdivision Σ∗(v) which leaves all smooth
cones unaltered and satisfies either:

mult (Σ∗(v)) ≤ mult(Σ)

mult (Σ∗(v)) ≤ mult(Σ) but Σ∗(v) has fewer cones with this multiplicity

Pick σ̃ ∈ Σ with maximal multiplicity and pick v ∈ Pσ̃ ∩ N \ {0}. According to the
definition of star subdivision we replace all σ such that v ∈ σ with Cone(τ, v) for τ a
face of σ, v 6∈ τ . Let τ̃ be such a face of σ̃.

Claim. mult(Cone(v, τ̃)) < mult(σ̃).

Proof of the claim. By Lemma 4.0.10, v =
∑d

i=1 λiui, 0 < λi < 1 for {ui}
d
i=1, the ray

generators of the minimal face τ̃ of σ̃ containing v. Since τ̃ is a face of σ̃ we can
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complete that base to {ui}
s
i=1, generators for σ̃, with s > d. But v 6∈ τ̃ , so we have i

such that ui 6∈ τ . Hence, by parts (iii) and (ii) in Lemma 4.0.10:

mult (Cone(τ̃ , v)) ≤ mult (Cone(u1, . . . , ûi, . . . , us, v))

= | det(u1, . . . , ûi, . . . us, λiui)|

= λi| det(u1, . . . , us)| = λimult(σ̃) < mult(σ̃).

We can finish the proof now. Since σ̃ is not smooth, by remark 1.1.10 (ii) σ̃ lies in
no smooth cone of Σ, so all smooth cones of Σ are in Σ∗(v) and we have lost at least
one cone of maximal multiplicity, so this finishes the inductive step.

The power of Theorem 4.0.12 is shown in the next chapter, when we resolve the
conifold.
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Chapter 5

Applications to String Theory

This chapter has two parts. First, we introduce the GLSM motivating why physicists
care about toric varieties. Then we analyse a particular class of singular toric variety,
the generalised conifold, and show how to resolve it by using the toric resolutions
introduced in chapter 4. However, the generalised conifold happens to be Calabi-Yau
and we will resolve it in such a way that the smooth space is also Calabi-Yau (this is
called a crepant resolution).

The generalised conifold appears very frequently in the most recent literature in
Theoretical Physics and it is one of the examples that mathematical physicists use
to tackle Donaldson-Thomas type invariants, usually arising from a quiver algebra.
In [Sze08] it is used to calculate non-commutative Donaldson-Thomas Invariants. In
[Nag10], Nagao uses it to generalise to higher dimensional Donaldson-Thomas invariants
and [NY09] uses it to work with the Topological Vertex. To compute these invariants
it is usually necessary to understand what the crepant resolutions of the generalised
conifold are made of. It turns out that they can be seen as multiple copies of the total
space of bundles O(−1,−1) and O(−2,−0). In particular, the topological vertex, as
defined in [AKMV05], is computed for the generalised conifold [IKP06] as:

Ztop(q,Q) =

(
∞∏

k=1

1

(1− qk)k

)χ/2 ∏

1≤i<j≤χ−1

∞∏

k=1

(1−Qi · · ·Qjq
k)si···sjk, (5.1)

for χ, the Euler characteristics of the generalised conifold, Q1, ..., Qχ−1 are the Kähler
moduli that measure the sizes of the embedded CP1s and the si = −1 or +1 for
O(−1,−1) or O(−2, 0), respectively. This is also used in [OSY10]. In section 5.2 we
show that these are all the embeddings and how to count them.

5.1 GLSM and toric varieties

The main goal of this section is explaining from a mathematical point of view what the
physics motivation for the study of toric varieties is. For a detailed treatement we refer
the reader to [CK99, Appendix B].

The Gauge Linear Sigma Model (GLSM) is a two-dimensional gauge theory. This
means that we have a 2-dimensional manifold (our space-time) with a graded principal
U(1)-bundle over it. We will work in the absence of a superpotential. We will have s
graded connections V1, . . . , Vs called gauge superfields and we will operate with n chiral
superfields Φ1, . . . ,Φn representing n particles with scalar values φ1, . . . , φn (we require
n ≥ s. These particles will have different charges depending on which gauge superfield
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is acting on them. We will write Qi,a for the charge of Ψi with respect to Va.

The equations of movement of these fields are determined by a Lagrangian that we
will omit. Using it the potential energy can be written as:

U(φi) = Σs
a=1

e2a
2

(
Σn
i=1Qi,a(φi)

2 − ra
)2
, a = 1, . . . , s (5.2)

where ea are the gauge coupling constants of each Va and ra, also known as the Fayet-
Iliopoulos term (or FI parameter). The FI parameter is an integral of a function
depending on Va over the space-time. Suppose we are interested in the space of all
possible supersymmetric ground states of this theory. We need to find the zeroes of the
potential energy (5.2), i.e. solutions to:

Σn
i=1Qi,a(φi)

2 = ra a = 1, . . . , s. (5.3)

For a generic choice of chargesQi,a and FI parameters (i.e. for s linearly independent
polynomials as in (5.3)) , the space formed by all the possible φi is an (n−s)-dimensional
affine variety.

Theorem 5.1.1 ([HKK+03][Section 7.3]). In the absence of a superpotential, and for a
generic choice of charges Qi,a and an appropriate choice of FI parameters, the space of
energy ground states of a 2-dimensional GLSM is an (n− s)-dimensional toric variety
XΣ whose fan Σ has n rays.

Remark. A discussion on this result can be found in the reference. However, we will
just state where the fan of 5.3 comes from. Since the choice of charges is generic, we
can find principal vectors {v1, . . . , vn} ⊆ Zn−s satisfying

n∑

i=1

Qi,avi = 0 ∀a = 1, . . . , s. (5.4)

This vectors therefore generate Σ(1). A construction similar to the one in chapter
3 is used and an exact sequence like 3.4 is constructed, where Ñ = Zn with basis
{e1, . . . , en}:

1 −→ G −→ T
Ñ
−→ TN −→ 1.

The map G→ T
Ñ

is defined as

(t1, . . . , ts) 7−→ (
s∏

a=1

t
Q1,a
a , . . . ,

s∏

a=1

t
Qn,a
n ) (5.5)

and T
Ñ
→ TN sends ei ⊗ z → vi ⊗ z. As in chapter 3, this only defines what the

rays of Σ are. Whether they generate a cone or not depends on the choice of the ra.
Note, for instance, that for a GLSM with one single vector of charges (1, 1), the variety
|φ1|

2 + |φ2|
2 = r has no solutions for r < 0.

The charges provide certain intersection numbers of T -invariant subvarieties of XΣ

[HKK+03, Chapter 7.4]. Also, the charges and the relation among them are the entries
of a matrix which lets us work with Landau-Ginzburg models.
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5.2 Application: Resolution of an affine toric conifold

Assume we work on the standard lattice N = Z3 with the standard inner product. Let
Σ ⊆ R3 be the fan with a single cone σ generated by vectors given by the following
matrix:

[
v0 v1 v2 v3

]
=



0 0 N1 N0

0 1 1 0
1 1 1 1




where N0 ≥ N1, N1 ≥ 0, N0 > 0. See Figure 5.1 for the case N1 = 2, N0 = 4.

v0
v3

v1
v2

z

y

x

Figure 5.1: Fan of the conifold V(xy − zN0wN1).

Remark. By Theorem 2.4.8 we already know that XΣ is Calabi-Yau and by Theorem
5.1.1 we can see it as a Gauge Linear Sigma Model.

We want to find XΣ as the spectrum of the algebra of the semigroup Sσ. To do so,
we find the inner pointing vectors perpendicular to each facet, and choose the minimal
ones within the lattice, for instance for the facet generated by {v0, v1}:

w0,1 ⊥ 〈v0, v1〉 w01 =

∣∣∣∣∣∣

i j k
0 1 1
0 0 1

∣∣∣∣∣∣
=



1
0
0


 .

Note that this method only works for dimension 3. For other dimensions we would use
the Gram-Schmidt method.

Similarly, we find all the other inner pointing vectors wij perpendicular to facets
generated by {vi, vj}, obtaining the matrix:

[
w01 w12 w23 w30

]
=



1 0 −1 0
0 −1 N1 −N0 1
0 1 N0 0


 ,

which gives rise to the dual cone in Figure 5.2.
The only relation on the dual cone is:

w01 −N0w12 + w23 −N1w30 = 0,

so the resulting coordinate ring and variety are:

C[Sσ] ∼=
C[x, y, z, w]

〈xy − zN0wN1〉
, XΣ = Xσ = V(xy − zN0wN1).

This variety has a singularity at (0, 0, 0, 0), known in the physics literature as a conifold
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x

z

y
w01

w12

w23

w30

Figure 5.2: Dual cone of the conifold V(xy − zN0wN1).

singularity. For N0 > 1 it is also singular at (0, 0, 0, w), w ∈ C and for N1 > 1 at
(0, 0, z, 0), z ∈ C. The variety itself is usually called conifold and many times the
values N0, N1 are taken to be 1.

We would like to resolve the singularity so that the resolution is both smooth,
Calabi-Yau and toric. Since there is no other point in the interior of {z = 1} ∩ σ ∩N
the only way we can resolve the singularity preserving the Calabi-Yau condition is by
crepant resolutions. This means dividing the fan Σ into a new fan Σ̃ in which all the
cones are generated by a basis for R3 of elements in σ ∩N . To remove the singularity
completely and preserve the triviality of the canonical bundle, we need to add vectors
to all the points in σ ∩ {z = 1} ∩ N and facets between some of them so that all
the cones in Σ̃ are generated by 3 vectors. This procedure follows from the algorithm
described in Chapter 4, where we repeatedly take σ∗(v), the star subdivision of σ for
v a minimal integral generator in a facet of σ, forcing that v ∈ {z = 1}. First we
turn the cone into a simplicial cone, by joining two of its rays, and then we subdivide
each of the cones until they are smooth. Figure 5.3 shows two possible triangulations.
The first resolution which turns the fan into a simplicial one appears thicker. They are
2-dimensional images since they correspond to the intersection with the plane {z = 1}.
Note that the resolution is crepant.

Figure 5.3: Examples of triangulations for the fan of the conifold V(xy − zN0wN1).
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x
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v0

v3

v1
v2

Type (a)
x

z

y

v0 v1
v2

v3

Type (b)

x

z

y
v0

v1

Figure 5.4: Basic small resolutions for the conifold.

Suppose we have subdivided Σ with a triangulation such that the resulting fan Σ̃
corresponds to a smooth variety, i.e. for each cone σ, σ ∩ N must be generated by
the primitive generators of 3 rays. Now consider the cones in Figure 5.4, and their
projection over the cones of CP1.

Since the preimages of cones in the fans downstairs in Figure 5.4 under the projec-
tions are cones (note the colours), this map is toric, and since they are trivial over open
sets, both triangulations must be vector bundles over CP1 (they are smooth since their
cones are simplicial).

In fact all the possible triangulations of Σ can be modelled as a union of the two
types (a) and (b) in Figure 5.4. To see this, note that all the tetrahedra which determine
cones in Σ̃ have volume

V =
1

3
A0h =

1

6
.

where A0 = 1
2 is the base at {z = 1} and h = 1 is the height. This is clearly the case

for all tetrahedra in Σ̃.
Now given two cones σ1, σ2 sharing a facet, their tetrahedra will have three vertices

in common: the origin and, say, u and v. The other two vertices, c1 and c2, can either
have the same coordinate y (0 or 1), or a different one. Now we can apply to both
cones some map φ in SL(3,Z) (an isotropy) to go to a situation of type (a) or (b) as
in Figure 5.4. This induces a morphism on the corresponding toric varieties. Since φ
is invertible, the map in the varieties is an isomorphism. Note that the types (a) and
(b) are not equivalent by SL(3,Z) since one of the tetrahedra should be fixed but not
the other one.

Proposition 5.2.1. For the fans in Figure 5.4

(i) The variety for the fan of type (a) is OCP1(−2, 0) := OCP1(−2)⊕OCP1.

(ii) The variety for the fan of type (b) is OCP1(−1,−1) := OCP1(−1)⊕OCP1(−1).
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Proof. For part (i), note that the fan is generated by the vectors

[
v0 v1 v2 v3

]
=



0 0 1 1
0 1 0 1
1 1 1 1


 ,

generating the cones 〈v0, v1, v2〉 and 〈v1, v2, v3〉. The dual cones are generated by the
vectors

[
w01 w02 w12 w13 w32

]
=



1 0 −1 0 1
0 1 −1 −1 0
0 0 1 1 −1


 .

Note the relations among these vectors:

w12 + w01 = w13, w12 + w02 = w32, −w12 = (−1)w12.

We therefore have two affine patches isomorphic to C3 with coordinates U, V,X corre-
sponding to w01, w02, w12 and Ũ , Ṽ , W̃ corresponding to w13, w32,−w12. The transition
functions between the two patches are determined by:

X̃ = X−1, UX = Ũ , V X = Ṽ ,

in the intersection of both (i.e, at X, X̃ 6= 0)). This is the local description of the
desired bundle.

For part (ii), note that the fan is generated by the vectors

[
v0 v1 v2 v3

]
=



0 0 1 2
0 1 0 0
1 1 1 1


 ,

grouped in two cones as before. The dual cones are generated by the same vectors as
before but with different values:

[
w01 w02 w12 w13 w32

]
=



1 0 −1 −1 0
0 1 −1 −2 1
0 0 1 2 0


 .

The relations are now:

2w12 + w01 = w13, w02 = w32, −w12 = (−1)w12.

And the transition functions are those of OCP1(−2, 0):

X̃ = X−1, Ṽ = V, Ũ = X2U.

As we mentioned at the beginning, for the formula of the topological vertex (5.1),
it is important to be able to determine which is each of the resolutions:

Algorithm 5.2.2. Consider a toric projective resolution of singularities which is cre-
pant for the generalised conifold, as above. Let l[i] be the lines of the resolution, with
origin l[i].o and end l[i].e where we take the criteria that the origin has component
y = 0 and the end y = 1 and i ranking between 0 and n. Then, for i taking values
from 1 to n− 1 the values of si in (5.1) are determined as follows:
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If ((l[i-1].o==l[i].o and l[i].o==l[i+1].o)

or (l[i-1].e==l[i].e and l[i].e==l[i+1].e))

then s[i]=1;

otherwise

s[i]=-1;

Proof. In the first case the three lines end or start in the same vertex, so they form a
triangle, as in type (a), and in the second case they form a quadrilateral, as in type
(b).
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