EXERCISES ON MODULI OF VARIETIES

Some of these exercises are computational/explicit and some are not. Feel free to skip problems that are not interesting to you!

- (1) If C is a smooth curve of genus $g \ge 2$, prove that either ω_C is very ample or C is hyperelliptic. If C is hyperelliptic, prove there exists an embedding $C \subset \mathbb{P}(1, 1, g + 1)$.
- (2) (a) Let $C = (x^2 = y^3) \subset X = \mathbb{A}^3$. Compute the log canonical threshold lct(X, C).
 - (b) Do the same for $C = (x^2 = y^4)$.
 - (c) (Only if you have seen weighted blow-ups.) Do the same for $C = (x^a = y^b)$.
- (3) For n, a relatively prime positive integers, let $\frac{1}{n}(1, a)$ denote the quotient singularity \mathbb{A}^2/μ_n where an *n*th root of unity acts on points (x, y) by $\zeta_n \cdot (x, y) = (\zeta_n x, \zeta_n^a y)$. These can be realized the varieties Spec $\mathbb{C}[x, y]^{\mu_n}$ (the ring of invariants under this action).
 - (a) Find a resolution of $\frac{1}{n}(1, n-1)$ and $\frac{1}{n}(1, 1)$. (If you have never seen these before: you may want to find the ring of invariants and consider these inside some affine space.) Show that they are klt.
 - (b) Show that $(\frac{1}{n}(1, n-1), (x=0))$ and $(\frac{1}{n}(1, 1), (x=0))$ are log canonical.
- (4) A smoothing of a variety X is a flat family $\mathcal{X} \to T$ such that a closed fiber $\mathcal{X}_0 = X$ and the generic fiber \mathcal{X}_t is smooth. In this lecture series, a smoothing is always a Q-Gorenstein smoothing, where we assume $\mathcal{K}_{X/T}$ is Q-Cartier.

Suppose $T = \mathbb{A}^1$ and $\mathcal{X} \to T$ is a Q-Gorenstein family. Prove that $(-K_{\mathcal{X}_t})^{\dim X}$ is independent of $t \in T$.

- (5) (a) Let $X = \mathbb{P}(a^2, b^2, c^2)$ such that $3abc = a^2 + b^2 + c^2$ where a, b, c are relatively co-prime. Prove that the singularities of X are locally smoothable (i.e., in some neighborhood of each singular point of X, we can construct a smoothing).
 - (b) If you know a bit of deformation theory, show that there are no local-to-global obstructions to smoothing X, and deduce that X is smoothable.
 - (c) Assuming (b), prove that X is smoothable to \mathbb{P}^2 .
- (6) If $\mathbb{P}(p,q,r)$ is any weighted projective degeneration of \mathbb{P}^2 , prove that $\mathbb{P}(p,q,r)$ must be as in problem 5(a).
- (7) Prove that the smooth quadric surface is K-semistable and that there exists a K-semistable cubic surface. Deduce that the generic cubic surface is K-semistable.
- (8) Prove the classification of GIT-semistable quartic plane curves.
 - (a) Prove that a quartic with a triple point is GIT unstable (exhibit a destablizing one-parameter subgroup).
 - (b) Prove that the union of a cubic curve and an inflectional line is GIT unstable (exhibit a destabilizing one-parameter subgroup).
 - (c) Prove that the following quartic curves are GIT semistable: any curve with at worst A_n singularities other than the one in (b), and the double conic. (Reminder/definition: an A_n singularity is a curve singularity of the form $x^2 = y^{n+1}$. What is the maximal such n that can occur on a quartic curve?)

- (9) Let $(X, cD) = (\mathbb{P}^2, c(xz y^2)^2)$. If $E = (xy z^2)$ is the conic in \mathbb{P}^2 , compute $A_{X,cD}(E)$ and $S_{X,cD}(E)$. Using that $\delta(X, cD) = \inf_E \frac{A_{X,cD}(E)}{S_{X,cD}(E)}$, find an upper bound c_0 for which (X, cD) could be K-semistable.
- (10) For $c = c_0 + \epsilon$, where c_0 , (X, cD) is as in the previous problem, the pair (X, cD) is K-unstable. Properness of K-moduli tells us any family of smooth plane quartics degenerating to this pair has a K-semistable limit. Find this limit, assuming the family of smooth plane quartics is sufficiently generic.
- (11) Let $c_0 = \operatorname{lct}(\mathbb{P}^2, D)$ where D is a quartic curve with a single cusp. (You found this number in (2).) For $c = c_0 + \epsilon$, the pair (\mathbb{P}^2, cD) is KSBA-unstable. Properness of KBSA-moduli tells us that any family of smooth plane quartics degenerating to this pair has a KSBA stable limit (a limit with slc singularities and ample log canonical). Find this limit, assuming the family of smooth plane quartics is sufficiently generic.
- (12) We asserted that the KSB(A) moduli stack is a Deligne-Mumford stack, which necessitates that the automorphism groups are finite. Prove this: if X is a variety with ample K_X , then Aut(X) is finite.
- (13) Prove that the K-moduli stack cannot be Deligne-Mumford in general.
- (14) Show by example that two non-isomorphic algebraic stacks can have isomorphic good moduli spaces.