EXERCISES ON GEOMETRIC INVARIANT THEORY - AGGITATE

Exercise 1. Show that the additive group \mathbb{G}_a is not linearly reductive by finding a finite dimensional \mathbb{G}_a -representation V such that $V^{\mathbb{G}_a}$ has no \mathbb{G}_a -invariant complement.

Exercise 2. Let G be a finite group whose order is invertible in k. Show that G is linearly reductive.

Exercise 3. [Affine algebraic groups are linear algebraic groups]

Let G be an affine algebraic group. We will prove that G is a closed subgroup of GL_n .

- a) For an action of G on an affine scheme $X = \operatorname{Spec} A$, show any finite dimensional vector space $W \subset A$ is contained in a finite dimensional G-invariant vector space $V \subset A$.
- b) Apply part (a) to the action of G on itself by left multiplication to find a finite dimensional G-invariant vector space of $V \subset \mathcal{O}(G)$ containing a set of generators for $\mathcal{O}(G)$. Prove that G is a linear algebraic group by constructing a morphism $G \to \operatorname{Mat}_{n \times n}$ where $n = \dim V$ by applying the comultiplication $m^* \colon \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ to a basis of V.

Exercise 4. [Properties of the Hilbert–Mumford weight]

For a group G acting on $X = \mathbb{P}(V)$ via a representation $G \to \mathrm{GL}(V)$, recall that the Hilbert–Mumford weight of $x = [v] \in X$ with respect to a 1-parameter subgroup $\lambda \colon \mathbb{G}_m \to G$ is

$$\mu(x,\lambda) = -\min\{\operatorname{wt}_{\lambda(\mathbb{G}_m)}(v)\}.$$

Prove the following statements.

- a) The Hilbert–Mumford weight $\mu(x,\lambda)$ is the unique integer $\mu \in \mathbb{Z}$ such that $\lim_{t\to 0} t^{\mu}\lambda(t) \cdot v$ exists¹ and is non-zero.
- b) We have $\mu(x,\lambda) = \mu(x_0,\lambda)$ where $x_0 = \lim_{t\to 0} \lambda(t) \cdot x$ (this limit exists in X by the valuative criterion for properness).
- c) We have $\mu(x,\lambda) \leq 0$ if and only if $\lim_{t\to 0} \lambda(t) \cdot v$ exists and equality holds if and only if $\lim_{t\to 0} \lambda(t) \cdot v \neq 0$.

Exercise 5. Let \mathbb{G}_m act on \mathbb{P}^n by $t \cdot [x_0 : \cdots : x_n] = [tx_0 : tx_1 : \cdots : tx_{n-1} : t^{-1}x_n]$.

- a) Describe the (semi)stable locus using the Hilbert–Mumford criterion and from this determine the GIT quotient.
- b) Compute the invariant ring to give an alternative way to describe the GIT quotient.

Exercise 6. [Binary forms of degree d] Consider the action of SL_2 on $X = \mathbb{P}(k[x,y]_d) \cong \mathbb{P}^d$. For a degree d binary form $F(x,y) = \sum_{i=0}^d a_i x^{d-i} y^i$, show that [F] is semistable if and only if any root of F has multiplicity at most d/2. When is F stable?

Exercise 7. [Twisted affine GIT]

For a reductive group G acting on an affine space \mathbb{A}^n , recall we can twist the linearisation on $\mathcal{O}_{\mathbb{A}^n}$ by a character $\rho \colon G \to \mathbb{G}_m$ to obtain a good quotient of a ρ -semistable set.

- a) For $G = \mathbb{G}_m$ acting by scalar multiplication on $V = \mathbb{A}^n$, compute the ρ -(semi)stable locus and the twisted affine GIT quotient $V//_{\rho}G$ for all characters $\rho \colon \mathbb{G}_m \to \mathbb{G}_m$ (which correspond to integers $n \in \mathbb{Z}$.
- b) For r < n), consider $G = GL_r$ acting on $Mat_{r \times n}$ by left multiplication and the character det: $GL_r \to \mathbb{G}_m$. Show that $A \in Mat_{r \times n}$ is semistable (with respect to det) if and only rk(A) = r by using King's Hilbert–Mumford criterion for twisted affine GIT. Then describe the twisted affine GIT quotient.

¹Recall that we say this limit exists if the map $\mathbb{G}_m \to V$ given by $t \mapsto t^{\mu} \lambda(t) v$ extends to $0 \in \mathbb{A}^1$ and we write the above limit for the image of 0 in this case.